Potentilla fruticosascrub, Kobresia humilismeadow and Kobresia tibeticameadow are widely distributed on the Qinghai-Tibet Plateau. During the grass exuberance period from 3 July to 4 September, based on close chamber-...Potentilla fruticosascrub, Kobresia humilismeadow and Kobresia tibeticameadow are widely distributed on the Qinghai-Tibet Plateau. During the grass exuberance period from 3 July to 4 September, based on close chamber-GC method, a study on CO 2 emissions from different treatments was conducted in these meadows at Haibei research station, CAS. Results indicated that mean CO 2 emission rates from various treatments were 672.09±152.37 mgm -2 h -1 for FC (grass treatment); 425.41±191.99 mgm -2 h -1 for FJ (grass exclusion treatment); 280.36±174.83 mgm -2 h -1 for FL (grass and roots exclusion treatment); 838.95±237.02 mgm -2 h -1 for GG (scrub+grass treatment); 528.48±205.67 mgm -2 h -1 for GC (grass treatment); 268.97±99.72 mgm -2 h -1 for GL (grass and roots exclusion treatment); and 659.20±94.83 mgm -2 h -1 for LC (grass treatment), respectively (FC, FJ, FL, GG, GC, GL, LC were the Chinese abbreviation for various treatments). Furthermore, Kobresia humilismeadow, Potentilla fruticosascrub meadow and Kobresia tibeticameadow differed greatly in average CO 2 emission rate of soil-plant system, in the order of GG>FC>LC>GC. Moreover, in Kobresia humilismeadow, heterotrophic and autotrophic respiration accounted for 42% and 58% of the total respiration of soil-plant system respectively, whereas, in Potentilla fruticosascrub meadow, heterotrophic and autotrophic respiration accounted for 32% and 68% of total system respiration from GG; 49% and 51% from GC. In addition, root respiration from Kobresia humilismeadow approximated 145 mgCO 2 m -2 h -1 , contributed 34% to soil respiration. During the experiment period, Kobresia humilismeadow and Potentilla fruticosascrub meadow had a net carbon fixation of 111.11 gm -2 and 243.89 gm -2 , respectively. Results also showed that soil temperature was the main factor which influenced CO 2 emission from alpine meadow ecosystem, significant correlations were found between soil temperature at 5 cm depth and CO 2 emission from GG, GC, FC and FJ treatments. In addition, soil moisture may be the inhibitory factor of CO 2 emission from Kobresia tibeticameadow, and more detailed analyses should be done in further research.展开更多
In this paper, an updated vegetation map of the permafrost zone in the Qinghai-Tibet Plateau (QTP) was delineated. The vegetation map model was extracted from vegetation sampling with remote sensing (RS) datasets ...In this paper, an updated vegetation map of the permafrost zone in the Qinghai-Tibet Plateau (QTP) was delineated. The vegetation map model was extracted from vegetation sampling with remote sensing (RS) datasets by decision tree method. The spatial resolution of the map is 1 km×1 kin, and in it the alpine swamp meadow is firstly distinguished in the high-altitude areas. The results showed that the total vegetated area in the permafrost zone of the QTP is 1,201,751 km2. In the vegetated region, 50,260 km2 is the areas of alpine swamp meadow, 583,909 km2 for alpine meadow, 332,754 km2 for alpine steppe, and 234,828 km2 for alpine desert. This updated vegetation map in permafrost zone of QTP could provide more details about the distribution of alpine vegetation types for studying the vegetation mechanisms in the land surface processes of highaltitude areas.展开更多
In this study, two different methods including Digital Camera and Reference Panel (DCRP) and traditional in situ fPAR observation for measuring the in situ point fPAR of very short alpine grass vegetation were compa...In this study, two different methods including Digital Camera and Reference Panel (DCRP) and traditional in situ fPAR observation for measuring the in situ point fPAR of very short alpine grass vegetation were compared, and the Moderate Resolution Imaging Spectroradiometer (MODIS) fPAR products were evaluated and validated by in situ point data on the alpine grassland over the Northern Tibetan Plateau, which is sensitive to climate change and vulnerable to anthropogenic activities. Results showed that the MODIS alpine grassland fPAR product, examined by using DCRP, and traditional in situ fPAR observation had a significant relationship at the spatial and temporal scales. The decadal MODIS fPAR trend analysis showed that, average growing season fPAR increased by 1.2 × 10^-4 per year and in total increased 0.86% from 2002 to 2011 in alpine grassland, when most of the fPAR increments occurred in southeast and center of the Northern Tibetan Plateau, the alpine grassland tended to recover from degradation slightly. However, climatic factors have influenced the various alpine grassland vegetation fPAR over a period of 10 years; precipitation significantly affected the alpine meadow fPAR in the eastern region, whereas temperature considerably influenced the alpine desert steppe fPAR in the west region. These findings suggest that the regional heterogeneity in alpine grassland fPAR results from various environmental factors, except for vegetation characteristics, such as canopy structure and leaf area.展开更多
Kobresia pygmaea Willd.dominates the alpine meadow ecosystem on the Qinghai-Tibet Plateau.Knowledge of this species' distribution and ecological environment could provide valuable insights into the alpine ecosystem a...Kobresia pygmaea Willd.dominates the alpine meadow ecosystem on the Qinghai-Tibet Plateau.Knowledge of this species' distribution and ecological environment could provide valuable insights into the alpine ecosystem and key species living there,support species and ecosystem conservation in alpine regions,and build on species origin and evolutionary research.To avoid modelling uncertainty encountered in a single approach,four species distribution model algorithms(Surface Range Envelope(SRE),Generalized Linear Model(GLM),Generalized Boosted Regression(GBM) and Maximum Entropy(MAXENT)),were used to simulate the distribution of K.pygmaea based on occurrence samples that were verified using DNA sequencing techniques.Species distribution modelling revealed a vast distribution region of K.pygmaea in the northern Tibetan Highlands and alpine meadows in the southern and eastern declivity of the plateau.A high evaluation performance was found for the GLM,GBM and MAXENT models.Different potential range size patterns for the four models were found between 374340–482605 km^2(average = 421591 km^2).Precipitation during growing seasons was found to be the dominant factor accounting for the distribution,consistent with patterns of heat and water patterns conditions of alpine ecosystems on the plateau.Species distribution models provide a simple and reliable approach to simulating the spatial patterns of species inhabiting the Qinghai-Tibet Plateau.展开更多
The seasonal variability in the surface energy exchange of an alpine grassland on the eastern Qinghai- Tibetan Plateau was investigated using eddy covariance measurements. Based on the change of air temperature and th...The seasonal variability in the surface energy exchange of an alpine grassland on the eastern Qinghai- Tibetan Plateau was investigated using eddy covariance measurements. Based on the change of air temperature and the seasonal distribution of precipitation, a winter season and wet season were identified, which were separated by transitional periods. The annual mean net radiation (Rn) was about 39 % of the annual mean solar radiation (Rs). Rn was relatively low during the winter season (21% of Rs) compared with the wet season (54 % of Rs), which can be explained by the difference in surface albedo and moisture condition between the two seasons. Annually, the main consumer of net radiation was latent heat flux (LE). During the winter season, sensible heat flux (H) was dominant because of the frozen soil condition and lack of precipita- tion. During the wet season, LE expended 66 % of Rn due to relatively high temperature and sufficient rainfall cou- pled with vegetation growth. Leaf area index (LAI) had important influence on energy partitioning during wet season. The high LAI due to high soil water content (θv) contributed to high surface conductance (go) and LE, and thus low Bowen ratio (β). LE was strongly controlled by Rn from June to August when gc and θv were high. During the transitional periods, H and LE were nearly equally parti- tioned in the energy balance. The results also suggested that the freeze-thaw condition of soil and the seasonal distribution of precipitation had important impacts on the energy exchange in this alpine grassland.展开更多
Aims Variations in vegetation spring phenology are widely attributed to temperature in temperate and cold regions.However,temperature effect on phenology remains elusive in cold and arid/semiarid ecosystems because so...Aims Variations in vegetation spring phenology are widely attributed to temperature in temperate and cold regions.However,temperature effect on phenology remains elusive in cold and arid/semiarid ecosystems because soil water condition also plays an important role in mediating phenology.Methods We used growing degree day(GDD)model and growing season index(GSI)model,coupling minimum temperature(T_(min))with soil moisture(SM)to explore the influence of heat requirement and hydroclimatic interaction on the start of carbon uptake period(SCUP)and net ecosystem productivity(NEP)in two alpine meadows with different precipitation regimes on the Qinghai-Tibet Plateau(QTP).One is the water-limited alpine steppe-meadow,and the other is the temperature-limited alpine shrub-meadow.Important Findings We observed two clear patterns linking GDD and GSI to SCUP:SCUP was similarly sensitive to variations in preseason GDD and GSI in the humid alpine shrub-meadow,while SCUP was more sensitive to the variability in preseason GSI than GDD in the semiarid alpine steppe-meadow.The divergent patterns indicated a balance of the limiting climatic factors between temperature and water availability.In the humid meadow,higher temperature sensitivity of SCUP could maximize thermal benefit without drought stress,as evidenced by the stronger linear correlation coefficient(R2)and Akaike’s information criterion(AIC)between observed SCUPs and those of simulated by GDD model.However,greater water sensitivity of SCUP could maximize the benefit of water in semiarid steppe-meadow,which is indicated by the stronger R2 and AIC between observed SCUPs and those of simulated by GSI model.Additionally,although SCUPs were determined by GDD in the alpine shrub-meadow ecosystem,NEP was both controlled by accumulative GSI in two alpine meadows.Our study highlights the impacts of hydroclimatic interaction on spring carbon flux phenology and vegetation productivity in the humid and semiarid alpine ecosystems.The results also suggest that water,together with temperature should be included in the models of phenology and carbon budget for alpine ecosystems in semiarid regions.These fi ndings have important implications for improving vegetation phenology models,thus advancing our understanding of the interplay between vegetation phenology,productivity and climate change in future.展开更多
文摘Potentilla fruticosascrub, Kobresia humilismeadow and Kobresia tibeticameadow are widely distributed on the Qinghai-Tibet Plateau. During the grass exuberance period from 3 July to 4 September, based on close chamber-GC method, a study on CO 2 emissions from different treatments was conducted in these meadows at Haibei research station, CAS. Results indicated that mean CO 2 emission rates from various treatments were 672.09±152.37 mgm -2 h -1 for FC (grass treatment); 425.41±191.99 mgm -2 h -1 for FJ (grass exclusion treatment); 280.36±174.83 mgm -2 h -1 for FL (grass and roots exclusion treatment); 838.95±237.02 mgm -2 h -1 for GG (scrub+grass treatment); 528.48±205.67 mgm -2 h -1 for GC (grass treatment); 268.97±99.72 mgm -2 h -1 for GL (grass and roots exclusion treatment); and 659.20±94.83 mgm -2 h -1 for LC (grass treatment), respectively (FC, FJ, FL, GG, GC, GL, LC were the Chinese abbreviation for various treatments). Furthermore, Kobresia humilismeadow, Potentilla fruticosascrub meadow and Kobresia tibeticameadow differed greatly in average CO 2 emission rate of soil-plant system, in the order of GG>FC>LC>GC. Moreover, in Kobresia humilismeadow, heterotrophic and autotrophic respiration accounted for 42% and 58% of the total respiration of soil-plant system respectively, whereas, in Potentilla fruticosascrub meadow, heterotrophic and autotrophic respiration accounted for 32% and 68% of total system respiration from GG; 49% and 51% from GC. In addition, root respiration from Kobresia humilismeadow approximated 145 mgCO 2 m -2 h -1 , contributed 34% to soil respiration. During the experiment period, Kobresia humilismeadow and Potentilla fruticosascrub meadow had a net carbon fixation of 111.11 gm -2 and 243.89 gm -2 , respectively. Results also showed that soil temperature was the main factor which influenced CO 2 emission from alpine meadow ecosystem, significant correlations were found between soil temperature at 5 cm depth and CO 2 emission from GG, GC, FC and FJ treatments. In addition, soil moisture may be the inhibitory factor of CO 2 emission from Kobresia tibeticameadow, and more detailed analyses should be done in further research.
基金supported by the National Natural Science Foundation of China (Grant No.41101055)the Hundred Talents Program of the Chinese Academy of Sciences granted to Tonghua Wu (Grant No.51Y251571)the “National Basic Research Program of China (973 Program)” (Grant No.2010CB951402)
文摘In this paper, an updated vegetation map of the permafrost zone in the Qinghai-Tibet Plateau (QTP) was delineated. The vegetation map model was extracted from vegetation sampling with remote sensing (RS) datasets by decision tree method. The spatial resolution of the map is 1 km×1 kin, and in it the alpine swamp meadow is firstly distinguished in the high-altitude areas. The results showed that the total vegetated area in the permafrost zone of the QTP is 1,201,751 km2. In the vegetated region, 50,260 km2 is the areas of alpine swamp meadow, 583,909 km2 for alpine meadow, 332,754 km2 for alpine steppe, and 234,828 km2 for alpine desert. This updated vegetation map in permafrost zone of QTP could provide more details about the distribution of alpine vegetation types for studying the vegetation mechanisms in the land surface processes of highaltitude areas.
文摘In this study, two different methods including Digital Camera and Reference Panel (DCRP) and traditional in situ fPAR observation for measuring the in situ point fPAR of very short alpine grass vegetation were compared, and the Moderate Resolution Imaging Spectroradiometer (MODIS) fPAR products were evaluated and validated by in situ point data on the alpine grassland over the Northern Tibetan Plateau, which is sensitive to climate change and vulnerable to anthropogenic activities. Results showed that the MODIS alpine grassland fPAR product, examined by using DCRP, and traditional in situ fPAR observation had a significant relationship at the spatial and temporal scales. The decadal MODIS fPAR trend analysis showed that, average growing season fPAR increased by 1.2 × 10^-4 per year and in total increased 0.86% from 2002 to 2011 in alpine grassland, when most of the fPAR increments occurred in southeast and center of the Northern Tibetan Plateau, the alpine grassland tended to recover from degradation slightly. However, climatic factors have influenced the various alpine grassland vegetation fPAR over a period of 10 years; precipitation significantly affected the alpine meadow fPAR in the eastern region, whereas temperature considerably influenced the alpine desert steppe fPAR in the west region. These findings suggest that the regional heterogeneity in alpine grassland fPAR results from various environmental factors, except for vegetation characteristics, such as canopy structure and leaf area.
基金National Natural Science Foundation of China(4140106831270503)National Development Project on Key Basic Research(2005CB422000)
文摘Kobresia pygmaea Willd.dominates the alpine meadow ecosystem on the Qinghai-Tibet Plateau.Knowledge of this species' distribution and ecological environment could provide valuable insights into the alpine ecosystem and key species living there,support species and ecosystem conservation in alpine regions,and build on species origin and evolutionary research.To avoid modelling uncertainty encountered in a single approach,four species distribution model algorithms(Surface Range Envelope(SRE),Generalized Linear Model(GLM),Generalized Boosted Regression(GBM) and Maximum Entropy(MAXENT)),were used to simulate the distribution of K.pygmaea based on occurrence samples that were verified using DNA sequencing techniques.Species distribution modelling revealed a vast distribution region of K.pygmaea in the northern Tibetan Highlands and alpine meadows in the southern and eastern declivity of the plateau.A high evaluation performance was found for the GLM,GBM and MAXENT models.Different potential range size patterns for the four models were found between 374340–482605 km^2(average = 421591 km^2).Precipitation during growing seasons was found to be the dominant factor accounting for the distribution,consistent with patterns of heat and water patterns conditions of alpine ecosystems on the plateau.Species distribution models provide a simple and reliable approach to simulating the spatial patterns of species inhabiting the Qinghai-Tibet Plateau.
基金supported by the National Basic Research Program of China(2010CB951701,2011CB952002)the National Natural Science Foundation of China(41205006,41275016)the Foundation for Excellent Youth Scholars of CAREERI,Chinese Academy of Sciences
文摘The seasonal variability in the surface energy exchange of an alpine grassland on the eastern Qinghai- Tibetan Plateau was investigated using eddy covariance measurements. Based on the change of air temperature and the seasonal distribution of precipitation, a winter season and wet season were identified, which were separated by transitional periods. The annual mean net radiation (Rn) was about 39 % of the annual mean solar radiation (Rs). Rn was relatively low during the winter season (21% of Rs) compared with the wet season (54 % of Rs), which can be explained by the difference in surface albedo and moisture condition between the two seasons. Annually, the main consumer of net radiation was latent heat flux (LE). During the winter season, sensible heat flux (H) was dominant because of the frozen soil condition and lack of precipita- tion. During the wet season, LE expended 66 % of Rn due to relatively high temperature and sufficient rainfall cou- pled with vegetation growth. Leaf area index (LAI) had important influence on energy partitioning during wet season. The high LAI due to high soil water content (θv) contributed to high surface conductance (go) and LE, and thus low Bowen ratio (β). LE was strongly controlled by Rn from June to August when gc and θv were high. During the transitional periods, H and LE were nearly equally parti- tioned in the energy balance. The results also suggested that the freeze-thaw condition of soil and the seasonal distribution of precipitation had important impacts on the energy exchange in this alpine grassland.
基金supported by the National Natural Science Foundation of China(31870406,41661144045)the State Key Research and Development Program(2016YFC0502001,2017YFA0604801).
文摘Aims Variations in vegetation spring phenology are widely attributed to temperature in temperate and cold regions.However,temperature effect on phenology remains elusive in cold and arid/semiarid ecosystems because soil water condition also plays an important role in mediating phenology.Methods We used growing degree day(GDD)model and growing season index(GSI)model,coupling minimum temperature(T_(min))with soil moisture(SM)to explore the influence of heat requirement and hydroclimatic interaction on the start of carbon uptake period(SCUP)and net ecosystem productivity(NEP)in two alpine meadows with different precipitation regimes on the Qinghai-Tibet Plateau(QTP).One is the water-limited alpine steppe-meadow,and the other is the temperature-limited alpine shrub-meadow.Important Findings We observed two clear patterns linking GDD and GSI to SCUP:SCUP was similarly sensitive to variations in preseason GDD and GSI in the humid alpine shrub-meadow,while SCUP was more sensitive to the variability in preseason GSI than GDD in the semiarid alpine steppe-meadow.The divergent patterns indicated a balance of the limiting climatic factors between temperature and water availability.In the humid meadow,higher temperature sensitivity of SCUP could maximize thermal benefit without drought stress,as evidenced by the stronger linear correlation coefficient(R2)and Akaike’s information criterion(AIC)between observed SCUPs and those of simulated by GDD model.However,greater water sensitivity of SCUP could maximize the benefit of water in semiarid steppe-meadow,which is indicated by the stronger R2 and AIC between observed SCUPs and those of simulated by GSI model.Additionally,although SCUPs were determined by GDD in the alpine shrub-meadow ecosystem,NEP was both controlled by accumulative GSI in two alpine meadows.Our study highlights the impacts of hydroclimatic interaction on spring carbon flux phenology and vegetation productivity in the humid and semiarid alpine ecosystems.The results also suggest that water,together with temperature should be included in the models of phenology and carbon budget for alpine ecosystems in semiarid regions.These fi ndings have important implications for improving vegetation phenology models,thus advancing our understanding of the interplay between vegetation phenology,productivity and climate change in future.