The oligosaccharide elicitor from the mycelial wall of an endophytic Colletotrichum sp. B501 promoted the production of artemisinin in Artemisia annua L. hairy root culture. When hairy roots of 22-day-old cultures (la...The oligosaccharide elicitor from the mycelial wall of an endophytic Colletotrichum sp. B501 promoted the production of artemisinin in Artemisia annua L. hairy root culture. When hairy roots of 22-day-old cultures (later growth phase) were exposed to the elicitor (20 mg/L) for 4 d, the maximum content of artemisinin reached 1.15 mg/g, a 64.29% increment over the control. The electron X-ray microanalysis disclosed the rapid accumulation of Ca 2+ in the elicited cortical cells of hairy root. The electronic microscope observation revealed the high electron density area in vacuole of elicited cells. During the first day of elicitation the peroxidase activity of hairy roots was improved sharply. Some cellular morphological changes including cell shrinkage, condensation of cytoplasm and nuclear fragmentation, coincident with the appearance of DNA ladders, were observed after the third day of elicitation. It was suggested that the oligosaccharide elicitor triggered the programmed cell death, which may provide the substance or chemical signal for artemisinin biosynthesis.展开更多
Artemisinin, the key ingredient of first-line antimalarial drugs, has large demand every year. The native plant, which produces small quantities of artemisinin, remains as its main source and thus results in a short s...Artemisinin, the key ingredient of first-line antimalarial drugs, has large demand every year. The native plant, which produces small quantities of artemisinin, remains as its main source and thus results in a short supply of artemisinin. Intensified efforts have been carried out to elevate artemisinin production. However, the routine metabolic engineering strategy, via overexpressing or down-regulating genes in artemisinin biosynthesis branch pathways, was not very effective as desired. Glandular secretory trichomes, sites of artemisinin biosynthesis on the surface of Artemisia annua L.(A. annua), are the new target for increasing artemisinin yield. In general, the population and morphology of glandular secretory trichomes in A. annua(Aa GSTs) are often positively correlated with artemisinin content. Improved understanding of Aa GSTs will shed light on the opportunities for increasing plant-derived artemisinin. This review article will refresh classification of trichomes in A. annua and provide an overview of the recent achievements regarding Aa GSTs and artemisinin. To have a full understanding of Aa GSTs,factors that are associated with trichome morphology and density will have to be further investigated, such as genes,micro RNAs and phytohormones. The purpose of thisreview was to(1) update the knowledge of the relation between Aa GSTs and artemisinin, and(2) propose new avenues to increase artemisinin yield by harnessing the potential biofactories, Aa GSTs.展开更多
Artemisinin, also known as qinghaosu, a sesquiterpene endoperoxide lactone isolated from the Chinese medicinal plant Artemisia annua L., is the most effective antimalarial drug which has saved millions of lives.Due to...Artemisinin, also known as qinghaosu, a sesquiterpene endoperoxide lactone isolated from the Chinese medicinal plant Artemisia annua L., is the most effective antimalarial drug which has saved millions of lives.Due to its great antimalarial activity and low content in wild A. annua plants, researches focused on enhancing the artemisin yield in plants became a hotspot. Several families of transcription factors have been reported to participate in regulating the biosynthesis and accumulation of artemisinin.In this review, we summarize recent investigations in these fields, with emphasis on newly identified transcription factors and their functions in artemisinin biosynthesis regulation, and provide new insight for further research.展开更多
文摘The oligosaccharide elicitor from the mycelial wall of an endophytic Colletotrichum sp. B501 promoted the production of artemisinin in Artemisia annua L. hairy root culture. When hairy roots of 22-day-old cultures (later growth phase) were exposed to the elicitor (20 mg/L) for 4 d, the maximum content of artemisinin reached 1.15 mg/g, a 64.29% increment over the control. The electron X-ray microanalysis disclosed the rapid accumulation of Ca 2+ in the elicited cortical cells of hairy root. The electronic microscope observation revealed the high electron density area in vacuole of elicited cells. During the first day of elicitation the peroxidase activity of hairy roots was improved sharply. Some cellular morphological changes including cell shrinkage, condensation of cytoplasm and nuclear fragmentation, coincident with the appearance of DNA ladders, were observed after the third day of elicitation. It was suggested that the oligosaccharide elicitor triggered the programmed cell death, which may provide the substance or chemical signal for artemisinin biosynthesis.
基金supported by the National Natural Science Foundation of China (Grant Nos. 31300159 U1405215)+2 种基金‘‘Pujiang Talent’’ program (13PJ1411000) Shanghai Science and Technology Development Funds (14QB1402700)Program 15391900500 from Science and Technology Commission of Shanghai Municipality and Technology Committee and Seedling Cultivation Fund of Outstanding Master, Second Military Medical University
文摘Artemisinin, the key ingredient of first-line antimalarial drugs, has large demand every year. The native plant, which produces small quantities of artemisinin, remains as its main source and thus results in a short supply of artemisinin. Intensified efforts have been carried out to elevate artemisinin production. However, the routine metabolic engineering strategy, via overexpressing or down-regulating genes in artemisinin biosynthesis branch pathways, was not very effective as desired. Glandular secretory trichomes, sites of artemisinin biosynthesis on the surface of Artemisia annua L.(A. annua), are the new target for increasing artemisinin yield. In general, the population and morphology of glandular secretory trichomes in A. annua(Aa GSTs) are often positively correlated with artemisinin content. Improved understanding of Aa GSTs will shed light on the opportunities for increasing plant-derived artemisinin. This review article will refresh classification of trichomes in A. annua and provide an overview of the recent achievements regarding Aa GSTs and artemisinin. To have a full understanding of Aa GSTs,factors that are associated with trichome morphology and density will have to be further investigated, such as genes,micro RNAs and phytohormones. The purpose of thisreview was to(1) update the knowledge of the relation between Aa GSTs and artemisinin, and(2) propose new avenues to increase artemisinin yield by harnessing the potential biofactories, Aa GSTs.
基金supported by National High Technology Research and Development Program(2011AA100605)Shanghai Key Discipline Cultivation and Construction Project(Horticulture+1 种基金ZXDF150005)Shanghai Jiao Tong University Agri-Engineering Program(AF1500028)
文摘Artemisinin, also known as qinghaosu, a sesquiterpene endoperoxide lactone isolated from the Chinese medicinal plant Artemisia annua L., is the most effective antimalarial drug which has saved millions of lives.Due to its great antimalarial activity and low content in wild A. annua plants, researches focused on enhancing the artemisin yield in plants became a hotspot. Several families of transcription factors have been reported to participate in regulating the biosynthesis and accumulation of artemisinin.In this review, we summarize recent investigations in these fields, with emphasis on newly identified transcription factors and their functions in artemisinin biosynthesis regulation, and provide new insight for further research.