The eight datasets of the summer (June-August) surface sensible heat (SH) flux over the Tibetan Plateau (TP) are compared on the time scales of the climatology,interannual variability and linear trend during 1980-2006...The eight datasets of the summer (June-August) surface sensible heat (SH) flux over the Tibetan Plateau (TP) are compared on the time scales of the climatology,interannual variability and linear trend during 1980-2006.These data sets include five reanalyses (National Center for Environmental Prediction reanalysis,NCEPR1 and NCEPR2,NCEP climate forecast system reanalysis,CFSR,Japanese 25-year reanalysis,JRA,and European Centre for Medium Range Weather Forecasts reanalysis,ERA40),two land surface model outputs (Noah model data of Global Land Data Assimilation System version 2,G2_Noah,and Simple Biosphere version 2 output by Yang et al.,YSiB2),and estimated SH based on China Meteorological Administration (CMA) station observations,ObCh.The results suggest that the summer SH on the TP differs from one dataset to another due to different inputs and calculations.Climatologically,the ERA40 and JRA distribute rather uniformly while the other six products show similar regional disparities,that is,larger in the west than in the east and stronger in the north and the south than in the middle of the plateau.The mean magnitude of the SH averaged over the 76 stations above the TP varies considerably among each dataset with the difference of more than 20 W m?2 between the maximum (G2_Noah) and minimum (ObCh).Nevertheless,they are consistent in the interannual variability and mostly show a significant decreasing trend corresponding to the weakening surface wind speed,in spite of the distinct trend for the ground-air temperature difference among the different data sets.These two consistencies indicate the particular availability of the SH products,which is helpful to the relevant climate dynamics research.展开更多
Over the last three decades, the Tibetan Plateau has exhibited a significant increase in air temperature and a significant decrease in wind speed. How the surface heat source has changed is an important issue in monso...Over the last three decades, the Tibetan Plateau has exhibited a significant increase in air temperature and a significant decrease in wind speed. How the surface heat source has changed is an important issue in monsoon research. Based on routine meteorological data, this study investigates the differences between methods for estimating trends in surface sensible heat flux on the Tibetan Plateau for the period 1984-2006. One is a physical method based on micro-meteorological theory and experi- ments, and takes into account both atmospheric stability and thermal roughness length. The other approach includes conven- tional empirical methods that assume the heat transfer coefficient is a constant value or a simple function of wind speed. The latter method is used widely in climatologic studies. Results from the physical method show that annual mean sensible heat flux has weakened by 2% per decade, and flux seasonal mean has weakened by -2%--4% except in winter. The two commonly used empirical methods showed high uncertainties in heat flux trend estimates, although they produced similar climatologies. Annual mean heat flux has weakened by 7% per decade when a fixed transfer coefficient is used, whereas the trend is negligible when the transfer coefficient is assumed a function of wind speed. Conventional empirical methods may therefore misrepresent the trend in sensible heat flux.展开更多
基金supported by Major Projects of the Knowledge Innovation Program of Chinese Academy of Sciences (Grant No. KZCX2-YW-Q11-01)the National Basic Research Program of China (Grant No. 2010CB950403)National Natural Science Foundation of China (Grant Nos. 40925015,40810059005 and 40821092)
文摘The eight datasets of the summer (June-August) surface sensible heat (SH) flux over the Tibetan Plateau (TP) are compared on the time scales of the climatology,interannual variability and linear trend during 1980-2006.These data sets include five reanalyses (National Center for Environmental Prediction reanalysis,NCEPR1 and NCEPR2,NCEP climate forecast system reanalysis,CFSR,Japanese 25-year reanalysis,JRA,and European Centre for Medium Range Weather Forecasts reanalysis,ERA40),two land surface model outputs (Noah model data of Global Land Data Assimilation System version 2,G2_Noah,and Simple Biosphere version 2 output by Yang et al.,YSiB2),and estimated SH based on China Meteorological Administration (CMA) station observations,ObCh.The results suggest that the summer SH on the TP differs from one dataset to another due to different inputs and calculations.Climatologically,the ERA40 and JRA distribute rather uniformly while the other six products show similar regional disparities,that is,larger in the west than in the east and stronger in the north and the south than in the middle of the plateau.The mean magnitude of the SH averaged over the 76 stations above the TP varies considerably among each dataset with the difference of more than 20 W m?2 between the maximum (G2_Noah) and minimum (ObCh).Nevertheless,they are consistent in the interannual variability and mostly show a significant decreasing trend corresponding to the weakening surface wind speed,in spite of the distinct trend for the ground-air temperature difference among the different data sets.These two consistencies indicate the particular availability of the SH products,which is helpful to the relevant climate dynamics research.
基金supported by National Natural Science Foundation of China (Grant Nos. 40875009, 40810059006)Key Innovation Project of Chinese Academy of Sciences (Grant No. KZCX2-YW-Q11-01),"100-Talent" Program of Chinese Academy of Sciences
文摘Over the last three decades, the Tibetan Plateau has exhibited a significant increase in air temperature and a significant decrease in wind speed. How the surface heat source has changed is an important issue in monsoon research. Based on routine meteorological data, this study investigates the differences between methods for estimating trends in surface sensible heat flux on the Tibetan Plateau for the period 1984-2006. One is a physical method based on micro-meteorological theory and experi- ments, and takes into account both atmospheric stability and thermal roughness length. The other approach includes conven- tional empirical methods that assume the heat transfer coefficient is a constant value or a simple function of wind speed. The latter method is used widely in climatologic studies. Results from the physical method show that annual mean sensible heat flux has weakened by 2% per decade, and flux seasonal mean has weakened by -2%--4% except in winter. The two commonly used empirical methods showed high uncertainties in heat flux trend estimates, although they produced similar climatologies. Annual mean heat flux has weakened by 7% per decade when a fixed transfer coefficient is used, whereas the trend is negligible when the transfer coefficient is assumed a function of wind speed. Conventional empirical methods may therefore misrepresent the trend in sensible heat flux.