期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
初论陆-陆碰撞与成矿作用——以青藏高原造山带为例 被引量:121
1
作者 侯增谦 吕庆田 +3 位作者 王安建 李晓波 王宗起 王二七 《矿床地质》 CAS CSCD 北大核心 2003年第4期319-333,共15页
青藏高原碰撞造山带以其成矿规模大、形成时代新、矿床类型多、保存条件好诸特征而被誉为研究大陆成矿作用的天然实验室。文章基于青藏高原已有的矿产勘查与研究成果 ,概述了大陆碰撞过程中的主要成矿作用及其成矿带的时空分布 ,初步分... 青藏高原碰撞造山带以其成矿规模大、形成时代新、矿床类型多、保存条件好诸特征而被誉为研究大陆成矿作用的天然实验室。文章基于青藏高原已有的矿产勘查与研究成果 ,概述了大陆碰撞过程中的主要成矿作用及其成矿带的时空分布 ,初步分析了陆_陆碰撞所造就的成矿背景和成矿环境以及控制成矿作用的关键地质过程 ,并草拟了可供今后研究的工作模型。初步研究认为 ,始于 6 0Ma的印度大陆与亚洲大陆碰撞至少形成了 3个重要的控矿构造单元 ,即雅鲁藏布江以北的主碰撞变形带 ,雅鲁藏布江以南的藏南拆离_逆冲带和高原东缘的藏东构造转换带。主碰撞变形带以巨大规模的地壳缩短、双倍地壳加厚、大规模逆冲系和SN向正断层系统发育为特征 ,控制了冈底斯斑岩铜矿带 (含浅成低温热液金矿 )、安多锑矿化带和风火山铜矿化带及腾冲锡矿带的形成及分布 ;藏南拆离_逆冲带由藏南拆离系 (STDS)和一系列北倾的叠瓦状逆冲断裂带构成 ,控制了藏南变质核杂岩型金矿化、热液脉型金锑矿化和蚀变破碎带型金锑矿化的形成 ;藏东构造转换带以发育大规模走滑断裂系统、大型剪切带、富碱斑岩带和走滑拉分盆地为特征 ,控制了玉龙斑岩铜矿带、哀牢山和锦屏山金矿带及兰坪盆地银多金属矿带的分布。按成矿系统的基本思想 ,初步将青藏高原碰撞? 展开更多
关键词 陆-陆碰撞 成矿作用 青藏高原造山带 地质学 矿床类型
下载PDF
西藏雄村大型铜金矿床的特征、成因和动力学背景 被引量:32
2
作者 徐文艺 曲晓明 +6 位作者 侯增谦 杨竹森 潘凤雏 崔艳合 陈伟十 杨丹 连玉 《地质学报》 EI CAS CSCD 北大核心 2006年第9期1392-1406,T0002,共16页
详细的蚀变矿化特征剖析揭示,雄村矿床的矿化样式可明显地区分为两种类型,即早期的细脉浸染状Cu-Au矿化和晚期的脉型金(银)-多金属矿化。早期细脉浸染状矿化的蚀变组合为:(钠长石化)-钾硅酸盐蚀变(局部)-红柱石化-广泛的绢英岩化-绿泥石... 详细的蚀变矿化特征剖析揭示,雄村矿床的矿化样式可明显地区分为两种类型,即早期的细脉浸染状Cu-Au矿化和晚期的脉型金(银)-多金属矿化。早期细脉浸染状矿化的蚀变组合为:(钠长石化)-钾硅酸盐蚀变(局部)-红柱石化-广泛的绢英岩化-绿泥石化(青磐岩化?);晚期脉型金(银)-多金属矿化蚀变组合为:强烈硅化-绿泥石化-高岭石化。蚀变矿化组合、流体包裹体测试结果及稳定同位素(H、O、S)组成揭示,早期细脉浸染状Cu-Au矿化可能属于未发育成熟的斑岩型矿化,晚期脉型金(银)-多金属矿化为介于高硫型与低硫型之间的过渡型浅成热液矿化。雄村矿床可能为一套生矿床,是未发育成熟的斑岩型矿化与浅成热液型矿化套生的产物;成矿流体组成上的一致性,表明套生的两期矿化可能属于同一热液体系的两个连续的矿化阶段,只是在两个矿化阶段成矿环境发生了较大改变。热液绢云母40Ar/39Ar测年和似伟晶岩脉中的钾长石K-Ar测年,表明雄村成矿系统形成于47.62±0.7Ma^38.11±0.9Ma间,与喜马拉雅—青藏高原造山带52~40Ma间歇性松弛或N-S向伸展有关;但雄村矿床的最终套生定位,与造山带40~38Ma间的强烈挤压隆升有关。 展开更多
关键词 喜马拉雅-青藏高原造山带 雄村 套生矿床 ^40Ar/^39Ar测年
下载PDF
Upper mantle anisotropy in the Ordos Block and its margins 被引量:32
3
作者 CHANG LiJun WANG ChunYong DING ZhiFeng 《Science China Earth Sciences》 SCIE EI CAS 2011年第6期888-900,共13页
Based on the polarization analysis of teleseismic data,SKS (SKKS) fast-wave directions and delay times between fast and slow shear waves were determined for each of the 111 seismic stations from both permanent and tem... Based on the polarization analysis of teleseismic data,SKS (SKKS) fast-wave directions and delay times between fast and slow shear waves were determined for each of the 111 seismic stations from both permanent and temporary broadband seismograph networks deployed in the Ordos Block and its margins.Both the Silver and Chan and stacking analysis methods were used.In this way,an image of upper mantle anisotropy in the Ordos Block and its margins was acquired.In the western and northern margins of the Ordos Block,the fast-wave directions are consistently NW-SE.The fast-wave directions are mainly NWW-SEE and EW in the southern margin of the Ordos Block.In the eastern margin of the Ordos Block,the fast-wave directions are generally EW,although some run NEE-SWW or NWW-SEE.In the Ordos Block,the fast-wave directions trend near N-S in the north,but switch to near EW in the south.The delay time between fast and slow waves falls into the interval 0.48-1.50 s,and the average delay time at the stations in the Ordos Block is less than that in its margins.We suggest that the anisotropy of the stable Ordos Block is mainly caused by "fossil" anisotropy frozen in the ancient North China Craton.The NE-trending push of the northeastern margin of the Tibetan Plateau has caused NW-SE-trending lithospheric extension in the western and northern margins of the Ordos Block,and made the upper mantle flow southeastwards.This in turn has resulted in the alignment of the upper mantle peridotite lattice with the direction of material deformation.In the southern margin of the Ordos Block,the collision between the North China and Yangtze blocks resulted in the fast-wave direction running parallel to the collision boundary and the Qinling Orogen.Combining this with the APM and velocity structure of the Qinling Orogen,we propose that eastward-directed asthenospheric-mantle channel flow may have occurred beneath the Qinling Orogen.In the eastern margin of the Ordos Block,the complex anisotropic characteristics of the Fenhe Graben and Taihang Orogen may be caused by the interaction of western Pacific Plate subduction,regional extensional tectonics,and the orogeny.For station YCI,the apparent splitting parameters (the fast-wave directions range from 45° to 106° and the delay times range from 0.6 to 1.5 s) exhibit systematic variations as a function of incoming polarization with a periodicity of π/2.This variation can be best explained by a two-layer anisotropic model (φlower=132°,δtlower=0.8 s,φupper=83°,δtupper=0.5 s).The upper layer anisotropy beneath station YCI can again be attributed to "fossil" anisotropy frozen in the ancient North China Craton.The lower layer anisotropy is affected by the tectonic activity of the western Ordos Block.The NW-SE trending extension caused by the NE trending push of the northeastern margin of the Tibetan Plateau affected the deformation of the lower anisotropic layer beneath station YCI.By comparing the fast-wave directions with GPS velocity directions,we see that the crust and upper mantle possibly have vertically coherent deformation in the margins of the Ordos Block,whereas the internal deformation characteristics of the Ordos Block are complex and require further study. 展开更多
关键词 Ordos Block upper mantle anisotropy SKS wave fast-wave direction lithosphere deformation
原文传递
The structure of Circum-Tibetan Plateau Basin-Range System and the large gas provinces 被引量:16
4
作者 JIA ChengZao LI BenLiang +1 位作者 LEI YongLiang CHEN ZhuXin 《Science China Earth Sciences》 SCIE EI CAS 2013年第11期1853-1863,共11页
Northward subduction of the Cenozoic Tethys ocean caused the convergence and collision of Eurasia-Indian Plates, resulting in the lower crust thickening, the upper crust thrusting, and the Qinghai-Tibet uplifting, and... Northward subduction of the Cenozoic Tethys ocean caused the convergence and collision of Eurasia-Indian Plates, resulting in the lower crust thickening, the upper crust thrusting, and the Qinghai-Tibet uplifting, and forming the plateau landscape. In company with uplifting and northward extruding of the Tibetan plateau, the contractional tectonic deformations persistently spread outward, building a gigantic basin-range system around the Tibetan plateau. This system is herein termed as the Cir- cure-Tibetan Plateau Basin-Range System, in which the global largest diffuse and the most energetic intra-continental defor- mations were involved, and populations of inheritance foreland basins or thrust belts were developed along the margins of an- cient cratonic plates due to the effects of the cratonic amalgamation, crust differentiation, orogen rejuvenation, and basin sub- sidence. There are three primary tectonic units in the Circum-Tibet Plateau Basin-Range System, which are the reactivated an- cient orogens, the foreland thrust belts, and the miniature cratonic basins. The Circum-Tibetan Plateau Basin-Range System is a gigantic deformation system and particular Himalayan tectonic domain in central-western China and is comparable to the Tibetan Plateau. In this system, northward and eastward developments of thrust deformations exhibit an arc-shaped area along the Kunlun-Altyn-Qilian-Longmenshan mountain belts, and further expand outward to the Altai-Yinshan-Luliangshan- Huayingshan mountain belts during the Late Cenozoic sustained collision of Indo-Asia. Intense intra-continental deformations lead ancient orogens to rejuvenate, young foreland basins to form in-between orogens and cratons, and thrusts to propagate from orogens to cratons in successive order. Driven by the Eurasia-Indian collision and its far field effects, both deformation and basin-range couplings in the arc-shaped area decrease from south to north. When a single basin-range unit is focused on, deformations become younger and younger together with more and more simple structural styles from piedmonts to craton in- teriors. In the Circum-Tibetan Plateau Basin-Range System, it presents three segmented tectonic deformational patterns: prop- agating in the west, growth-overthrusting in the middle, and slip-uplifting in the east. For natural gas exploration, two tectonic units, both the Paleozoic cratonic basins and the Cenozoic foreland thrust belts, are important because hydrocarbon in cen- tral-western China is preserved mainly in the Paleozoic cratonic paleo-highs and the Meso-Cenozoic foreland thrust belts, to- gether with characteristics of multiphrase hydrocarbon generation but late accumulation and enrichment. 展开更多
关键词 Circum-Tibet Plateau Basin-Range System Himalayan movement intra-continental deformation tectonic domain natural gas resources
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部