为确定青霉素G钾(penicillin G potassium,PG)在土壤中的半衰期和降解动力学,选择灭菌与未灭菌、施肥与未施肥蔬菜地土壤作为基质,研究了PG在不同基质中的降解曲线,并拟合了降解动力学方程。结果表明,PG在蔬菜地土壤中的半衰期为1.61~1....为确定青霉素G钾(penicillin G potassium,PG)在土壤中的半衰期和降解动力学,选择灭菌与未灭菌、施肥与未施肥蔬菜地土壤作为基质,研究了PG在不同基质中的降解曲线,并拟合了降解动力学方程。结果表明,PG在蔬菜地土壤中的半衰期为1.61~1.67 d,最终降解率均达到99.7%以上,但PG不会完全降解,仍会以较低的水平(21~73μg·kg^-1)在土壤中长期存在。降解动力学方程拟合结果表明,PG的初始浓度会对降解速率产生影响,初始浓度越高,降解速率越快。在灭菌与未灭菌土壤中降解曲线显示其降解过程受生物和非生物作用共同影响,但添加有机肥的降解过程和未添加组没有显著差异。由于PG在土壤中不能被完全降解,从而增加了诱导抗性基因产生及转移的风险。展开更多
文摘为确定青霉素G钾(penicillin G potassium,PG)在土壤中的半衰期和降解动力学,选择灭菌与未灭菌、施肥与未施肥蔬菜地土壤作为基质,研究了PG在不同基质中的降解曲线,并拟合了降解动力学方程。结果表明,PG在蔬菜地土壤中的半衰期为1.61~1.67 d,最终降解率均达到99.7%以上,但PG不会完全降解,仍会以较低的水平(21~73μg·kg^-1)在土壤中长期存在。降解动力学方程拟合结果表明,PG的初始浓度会对降解速率产生影响,初始浓度越高,降解速率越快。在灭菌与未灭菌土壤中降解曲线显示其降解过程受生物和非生物作用共同影响,但添加有机肥的降解过程和未添加组没有显著差异。由于PG在土壤中不能被完全降解,从而增加了诱导抗性基因产生及转移的风险。