By virtue of a 3∶1 complementary coordination strategy,a chiral heteroleptic metal-organic cage that con-tains divergent functional units,Pd‑R(Zn),was precisely constructed via self-assembly of monodentate variationa...By virtue of a 3∶1 complementary coordination strategy,a chiral heteroleptic metal-organic cage that con-tains divergent functional units,Pd‑R(Zn),was precisely constructed via self-assembly of monodentate variational Zn-salen ligands RZn and NADH(reduced nicotinamide adenine dinucleotide)mimic modified tridentate ligands with square-planar Pd ions.UV-Vis and luminescence spectra experiments reveal that different anions could selec-tively interact with different sites of Zn-salen modified metal-organic cages to achieve the structural regulation of cage compound,by using the differentiated host-guest electrostatic interactions of counter ions with metal-organic hosts.Compared to other anions,the presence of chloride ions caused the most significant fluorescence emission enhancement of Pd‑R(Zn),meanwhile,the UV-Vis absorption band attributed to the salen aromatic backbone showed an absorption decrease,and the metal-to-ligand induced peak displayed a blue shift effect.Circular dichro-ism and ^(1)H NMR spectra further demonstrate that the introduction of chloride anions is beneficial to keeping a more rigid scaffold.展开更多
Underground energy and resource development,deep underground energy storage and other projects involve the global stability of multiple interconnected cavern groups under internal and external dynamic disturbances.An ...Underground energy and resource development,deep underground energy storage and other projects involve the global stability of multiple interconnected cavern groups under internal and external dynamic disturbances.An evaluation method of the global stability coefficient of underground caverns based on static overload and dynamic overload was proposed.Firstly,the global failure criterion for caverns was defined based on its band connection of plastic-strain between multi-caverns.Then,overloading calculation of the boundary geostress and seismic intensity on the caverns model was carried out,and the critical unstable state of multi-caverns can be identified,if the plastic-strain band appeared between caverns during these overloading processes.Thus,the global stability coefficient for the multi-caverns under static loading and earthquake was obtained based on the corresponding overloading coefficient.Practical analysis for the Yingliangbao(YLB)hydraulic caverns indicated that this method can not only effectively obtain the global stability coefficient of caverns under static and dynamic earthquake conditions,but also identify the caverns’high-risk zone of local instability through localized plastic strain of surrounding rock.This study can provide some reference for the layout design and seismic optimization of underground cavern group.展开更多
Based on the surface-gate and buried-gate structures,a novel buried-gate structure called the planar type buried-gate (PTBG) structure for static induction devices (SIDs) is proposed.An approach to realize a buried-ga...Based on the surface-gate and buried-gate structures,a novel buried-gate structure called the planar type buried-gate (PTBG) structure for static induction devices (SIDs) is proposed.An approach to realize a buried-gate type static induction transistor by conventional planar process technology is presented.Using this structure,it is successfully avoided the second epitaxy with a high degree of difficulty and the complicated mesa process in conventional buried gate.The experimental results demonstrate that this structure is desirable for application in power SIDs.Its advantages are high breakdown voltage and blocking gain.展开更多
The space charge effect (SCE) of static induction transistor (SIT) that occurs in high current region is systematically studied.The I V equations are deduced and well agree with experimental results.Two kinds of ...The space charge effect (SCE) of static induction transistor (SIT) that occurs in high current region is systematically studied.The I V equations are deduced and well agree with experimental results.Two kinds of barriers are presented in SIT,corresponding to channel voltage barrier control (CVBC) mechanism and space charge limited control (SCLC) mechanism respectively.With the increase of drain voltage,the gradual transferring of operational mechanism from CVBC to SCLC is demonstrated.It points out that CVBC mechanism and its contest relationship with space charge barrier makes the SIT distinctly differentiated from JFET and triode devices,etc.The contest relationship of the two potential barriers also results in three different working regions,which are distinctly marked and analyzed.Furthermore,the extreme importance of grid voltage on SCE is illustrated.展开更多
Methods for improving the high current performance of static induction transistor (SIT) are presented.Many important factors,such as "trans-conductance per unit channel width" θ, "gate efficiency" η, "sensiti...Methods for improving the high current performance of static induction transistor (SIT) are presented.Many important factors,such as "trans-conductance per unit channel width" θ, "gate efficiency" η, "sensitivity factor" D,and "intrinsic static gain" μ0,that may be used to describe different aspects of the electrical performance of an SIT are first defined.The dependences of electrical parameters on the structure and technological process of an SIT are revealed for the first time.The packaging technologies are so important for the improvement of high power performance of SITs that they must be paid attention.Testing techniques and circuits for measuring frequency and power parameters of SITs are designed and constructed.The influence of packaging processes in technological practice on the electrical performance of SITs is also discussed in depth.展开更多
文摘目的:探讨采取心脏超声指导管理静动脉体外膜肺氧合(V⁃A ECMO)流量的应用效果。方法:选取2020年1月至2021年12月在高州市人民医院重症一区因左心功能衰竭行V⁃AECMO辅助的患者48例,将患者随机分为2组,A组为心脏超声指导流量管理组,B组为经验管理流量组。A组应用心脏超声技术测算左室流出道速度时间积分,并计算自身心输出量(Cardiac Output,CO),根据自身CO调节ECMO流量,滴定至自身CO达到最大化,同时使全身血流量≥2.4 L/min/m2×BSA(体表面积)以满足机体基本灌注量。B组依据平均动脉压、乳酸、尿量、ScvO2、血管活性药物剂量等指标调整流量。比较2组患者ECMO使用时间、机械通气时间、撤机成功率、并发症发生率、ICU住院时间及30天存活率。结果:A组患者ECMO辅助时间、机械通气时间明显少于B组[92.0(57.5,106.8)h vs 144.3(73.4,166.8)h,P<0.05]、[107.7(60.3,124.7)h vs 137.9(68.0,178.3)h,P<0.05]。A组ECMO撤机成功率明显高于B组(68.00%vs 52.17%,P<0.05),并发症发生率明显低于B组(48.0%vs 69.57%,P<0.05)。结论:通过心脏超声指导ECMO流量进行滴定式管理,可以减少ECMO使用时间,降低并发症发生率,提高撤机成功率及30天存活率。
文摘By virtue of a 3∶1 complementary coordination strategy,a chiral heteroleptic metal-organic cage that con-tains divergent functional units,Pd‑R(Zn),was precisely constructed via self-assembly of monodentate variational Zn-salen ligands RZn and NADH(reduced nicotinamide adenine dinucleotide)mimic modified tridentate ligands with square-planar Pd ions.UV-Vis and luminescence spectra experiments reveal that different anions could selec-tively interact with different sites of Zn-salen modified metal-organic cages to achieve the structural regulation of cage compound,by using the differentiated host-guest electrostatic interactions of counter ions with metal-organic hosts.Compared to other anions,the presence of chloride ions caused the most significant fluorescence emission enhancement of Pd‑R(Zn),meanwhile,the UV-Vis absorption band attributed to the salen aromatic backbone showed an absorption decrease,and the metal-to-ligand induced peak displayed a blue shift effect.Circular dichro-ism and ^(1)H NMR spectra further demonstrate that the introduction of chloride anions is beneficial to keeping a more rigid scaffold.
基金Project(2023YFC2907204)supported by the National Key Research and Development Program of ChinaProject(52325905)supported by the National Natural Science Foundation of ChinaProject(DJ-HXGG-2023-16)supported by the Key Technology Research Projects of Power China。
文摘Underground energy and resource development,deep underground energy storage and other projects involve the global stability of multiple interconnected cavern groups under internal and external dynamic disturbances.An evaluation method of the global stability coefficient of underground caverns based on static overload and dynamic overload was proposed.Firstly,the global failure criterion for caverns was defined based on its band connection of plastic-strain between multi-caverns.Then,overloading calculation of the boundary geostress and seismic intensity on the caverns model was carried out,and the critical unstable state of multi-caverns can be identified,if the plastic-strain band appeared between caverns during these overloading processes.Thus,the global stability coefficient for the multi-caverns under static loading and earthquake was obtained based on the corresponding overloading coefficient.Practical analysis for the Yingliangbao(YLB)hydraulic caverns indicated that this method can not only effectively obtain the global stability coefficient of caverns under static and dynamic earthquake conditions,but also identify the caverns’high-risk zone of local instability through localized plastic strain of surrounding rock.This study can provide some reference for the layout design and seismic optimization of underground cavern group.
文摘Based on the surface-gate and buried-gate structures,a novel buried-gate structure called the planar type buried-gate (PTBG) structure for static induction devices (SIDs) is proposed.An approach to realize a buried-gate type static induction transistor by conventional planar process technology is presented.Using this structure,it is successfully avoided the second epitaxy with a high degree of difficulty and the complicated mesa process in conventional buried gate.The experimental results demonstrate that this structure is desirable for application in power SIDs.Its advantages are high breakdown voltage and blocking gain.
文摘The space charge effect (SCE) of static induction transistor (SIT) that occurs in high current region is systematically studied.The I V equations are deduced and well agree with experimental results.Two kinds of barriers are presented in SIT,corresponding to channel voltage barrier control (CVBC) mechanism and space charge limited control (SCLC) mechanism respectively.With the increase of drain voltage,the gradual transferring of operational mechanism from CVBC to SCLC is demonstrated.It points out that CVBC mechanism and its contest relationship with space charge barrier makes the SIT distinctly differentiated from JFET and triode devices,etc.The contest relationship of the two potential barriers also results in three different working regions,which are distinctly marked and analyzed.Furthermore,the extreme importance of grid voltage on SCE is illustrated.
文摘Methods for improving the high current performance of static induction transistor (SIT) are presented.Many important factors,such as "trans-conductance per unit channel width" θ, "gate efficiency" η, "sensitivity factor" D,and "intrinsic static gain" μ0,that may be used to describe different aspects of the electrical performance of an SIT are first defined.The dependences of electrical parameters on the structure and technological process of an SIT are revealed for the first time.The packaging technologies are so important for the improvement of high power performance of SITs that they must be paid attention.Testing techniques and circuits for measuring frequency and power parameters of SITs are designed and constructed.The influence of packaging processes in technological practice on the electrical performance of SITs is also discussed in depth.