An improved finite difference method (FDM)is described to solve existing problems such as low efficiency and poor convergence performance in the traditional method adopted to derive the pressure distribution of aero...An improved finite difference method (FDM)is described to solve existing problems such as low efficiency and poor convergence performance in the traditional method adopted to derive the pressure distribution of aerostatic bearings. A detailed theoretical analysis of the pressure distribution of the orifice-compensated aerostatic journal bearing is presented. The nonlinear dimensionless Reynolds equation of the aerostatic journal bearing is solved by the finite difference method. Based on the principle of flow equilibrium, a new iterative algorithm named the variable step size successive approximation method is presented to adjust the pressure at the orifice in the iterative process and enhance the efficiency and convergence performance of the algorithm. A general program is developed to analyze the pressure distribution of the aerostatic journal bearing by Matlab tool. The results show that the improved finite difference method is highly effective, reliable, stable, and convergent. Even when very thin gas film thicknesses (less than 2 Win)are considered, the improved calculation method still yields a result and converges fast.展开更多
A quasi-distributed dynamic and static strain sensor system consisting of 16 FBG sensors is designed by using an amplified-sponteneous emission (ASE) optical source, an optical tunable falter and a tunable laser. Ar...A quasi-distributed dynamic and static strain sensor system consisting of 16 FBG sensors is designed by using an amplified-sponteneous emission (ASE) optical source, an optical tunable falter and a tunable laser. Aresolution of about 5 με has been achieved for dynamic strain measurement. The resolution for static strain measurement is about 1 με.展开更多
The volute of a centrifugal compressor causes a non-uniform pressure distribution which leads to a radial force on the impeller. This force was measured using magnetic bearings. In addition, the radial force was estim...The volute of a centrifugal compressor causes a non-uniform pressure distribution which leads to a radial force on the impeller. This force was measured using magnetic bearings. In addition, the radial force was estimated using the static pressure distribution measured at the impeller outlet. The impeller force was found to be the highest at choke, the lowest at the design flow and moderate at stall. The radial force determined from the pressure measurements was only slightly different from the force obtained from the bearing measurements. The rotational speed was seen to affect the force to some extent.展开更多
A new depth-integrated model deploying a non-hydrostatic pressure distribution is presented.With the pressure divided into hydrostatic and dynamic components,the horizontal momentum equations were obtained by integrat...A new depth-integrated model deploying a non-hydrostatic pressure distribution is presented.With the pressure divided into hydrostatic and dynamic components,the horizontal momentum equations were obtained by integrating the Navier-Stokes equations from the bottom to the free surface.The vertical momentum equation,in which the convective and viscosity terms were omitted,was approximated by the Keller-box scheme.The model has two steps.First,the dynamic pressure gradient terms were discretized semi-implicitly and the other terms were in explicit scheme.Second,the velocities expressed as the unknown dynamic pressure were substituted into the continuity equation,resulting in a five-diagonal symmetric matrix linear system that was solved by the conjugate gradient method.The model was validated with the propagation of a solitary wave and sinusoidal wave,indicating that it can predict free surface flows well.展开更多
In this paper, a new evaluation method of probabilistic TTC based on SVSR calculation is developed through a hierarchical simulation. A smooth technology based on the non-parametric kernel estimator is adapted to obta...In this paper, a new evaluation method of probabilistic TTC based on SVSR calculation is developed through a hierarchical simulation. A smooth technology based on the non-parametric kernel estimator is adapted to obtain the time-dependent probabilistic density function of the feeder-head load data. In order to describe possible operating change directions of the operating point, the original hyper-cone-like(HCL) model is constructed to consider the probabilistic distribution function(PDF) extracted from feeder-head load data to replace the simple Normal Distribution model and the uncertain generator outputs. To realize the fast TTC calculation of the current operating point in random conditions, a sub-hyper-cone-like(SHCL) model in full power injections space is proposed, which is a similarity transformation of the original one.展开更多
This paper investigates static axially symmetric models in self-interacting Brans-Dicke gravity. We discuss physically feasible sources of models, derive field equations as well as evolution equations from Bianchi ide...This paper investigates static axially symmetric models in self-interacting Brans-Dicke gravity. We discuss physically feasible sources of models, derive field equations as well as evolution equations from Bianchi identities and construct structure scalars. Using these scalars and evolution equations, the inhomogeneity factors of the system are evaluated. It is found that structure scalars related to double dual of Riemann tensor control the density inhomogeneity. Finally, we obtain exact solutions of homogenous isotropic and inhomogeneous anisotropic spheroid models. It turns out that homogenous solutions reduce to Schwarzschild type interior solutions for a spherical case. We conclude that homogenous models involve homogenous distribution of scalar field whereas inhomogeneous correspond to inhomogeneous sca/ar field.展开更多
基金The National Natural Science Foundation of China(No50475073,50775036)the High Technology Research Program of Jiangsu Province(NoBG2006035)
文摘An improved finite difference method (FDM)is described to solve existing problems such as low efficiency and poor convergence performance in the traditional method adopted to derive the pressure distribution of aerostatic bearings. A detailed theoretical analysis of the pressure distribution of the orifice-compensated aerostatic journal bearing is presented. The nonlinear dimensionless Reynolds equation of the aerostatic journal bearing is solved by the finite difference method. Based on the principle of flow equilibrium, a new iterative algorithm named the variable step size successive approximation method is presented to adjust the pressure at the orifice in the iterative process and enhance the efficiency and convergence performance of the algorithm. A general program is developed to analyze the pressure distribution of the aerostatic journal bearing by Matlab tool. The results show that the improved finite difference method is highly effective, reliable, stable, and convergent. Even when very thin gas film thicknesses (less than 2 Win)are considered, the improved calculation method still yields a result and converges fast.
基金the National Natural Science Foundation of China (No.60377031)the National Basic Research Program of China (No.2003CB314907)the Program for New Century Excellent Talents in University
文摘A quasi-distributed dynamic and static strain sensor system consisting of 16 FBG sensors is designed by using an amplified-sponteneous emission (ASE) optical source, an optical tunable falter and a tunable laser. Aresolution of about 5 με has been achieved for dynamic strain measurement. The resolution for static strain measurement is about 1 με.
文摘The volute of a centrifugal compressor causes a non-uniform pressure distribution which leads to a radial force on the impeller. This force was measured using magnetic bearings. In addition, the radial force was estimated using the static pressure distribution measured at the impeller outlet. The impeller force was found to be the highest at choke, the lowest at the design flow and moderate at stall. The radial force determined from the pressure measurements was only slightly different from the force obtained from the bearing measurements. The rotational speed was seen to affect the force to some extent.
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20110142110064)the Ministry of Water Resources’ Science and Technology Promotion Plan Program of China (Grant No. TG1316)
文摘A new depth-integrated model deploying a non-hydrostatic pressure distribution is presented.With the pressure divided into hydrostatic and dynamic components,the horizontal momentum equations were obtained by integrating the Navier-Stokes equations from the bottom to the free surface.The vertical momentum equation,in which the convective and viscosity terms were omitted,was approximated by the Keller-box scheme.The model has two steps.First,the dynamic pressure gradient terms were discretized semi-implicitly and the other terms were in explicit scheme.Second,the velocities expressed as the unknown dynamic pressure were substituted into the continuity equation,resulting in a five-diagonal symmetric matrix linear system that was solved by the conjugate gradient method.The model was validated with the propagation of a solitary wave and sinusoidal wave,indicating that it can predict free surface flows well.
基金supported the National Hi-Tech Research and Development Program of China(Grant No.2015AA050403)the National Natural Science Foundation of China(Grant Nos.51277128+7 种基金51407125&51361135704)Statement of Collaboration between University of VictoriaCanadaTianjin UniversityChinaand"131"Talent&Innovative Team of Tianjin CityFundamental and Perspective Project of State Grid Corporation of China-"Study on the Energy Internet Technology Framework"Science and Technology Project of State Grid Corporation of China(Grant No.5217L0150004)
文摘In this paper, a new evaluation method of probabilistic TTC based on SVSR calculation is developed through a hierarchical simulation. A smooth technology based on the non-parametric kernel estimator is adapted to obtain the time-dependent probabilistic density function of the feeder-head load data. In order to describe possible operating change directions of the operating point, the original hyper-cone-like(HCL) model is constructed to consider the probabilistic distribution function(PDF) extracted from feeder-head load data to replace the simple Normal Distribution model and the uncertain generator outputs. To realize the fast TTC calculation of the current operating point in random conditions, a sub-hyper-cone-like(SHCL) model in full power injections space is proposed, which is a similarity transformation of the original one.
文摘This paper investigates static axially symmetric models in self-interacting Brans-Dicke gravity. We discuss physically feasible sources of models, derive field equations as well as evolution equations from Bianchi identities and construct structure scalars. Using these scalars and evolution equations, the inhomogeneity factors of the system are evaluated. It is found that structure scalars related to double dual of Riemann tensor control the density inhomogeneity. Finally, we obtain exact solutions of homogenous isotropic and inhomogeneous anisotropic spheroid models. It turns out that homogenous solutions reduce to Schwarzschild type interior solutions for a spherical case. We conclude that homogenous models involve homogenous distribution of scalar field whereas inhomogeneous correspond to inhomogeneous sca/ar field.