The “Huang gua” melons were measured for their physical properties including firmness and static elastic modulus. The vibrational characteristics of fruits and vegetables are governed by their elastic modulus (firmn...The “Huang gua” melons were measured for their physical properties including firmness and static elastic modulus. The vibrational characteristics of fruits and vegetables are governed by their elastic modulus (firmness), mass, and geometry. Therefore, it is possible to evaluate firmness of fruits and vegetables based on their vibrational characteristics. Analysis of the vibration responses of a fruit is suggested for measuring elastic properties (Firmness) non-destructively. The impulse response method is often used to measure firmness of fruits. The fruit was excited using three types of balls (wooden, steel and rubber) and the vibration is detected by an accelerometer. The Instron device was used to measure the static elastic modulus of the inner, middle and outer portions of melon flesh. Finite element (FE) technique was used to determine the optimum excitation location of the chosen measurement sensor and to analyze the mode shape fruits. Four types of mode shapes (torsional or flexural mode shape, first-type, second-type spherical mode and breathing mode shape) were found. Finite element simulation results agreed well with experimental results. Correlation between the firmness and resonant frequency (r2=0.91) and between the resonant frequency and stiffness factor (r2=0.74) existed. The optimum location and suitable direction for excitation and response measurement on the fruit were suggested.展开更多
Random behavior of concrete C45/55 XF2 used for prefabricated pre-stressed bridge beams is described on the basis of evaluating a vast set of measurements. A detailed statistical analysis is carried out on 133 test re...Random behavior of concrete C45/55 XF2 used for prefabricated pre-stressed bridge beams is described on the basis of evaluating a vast set of measurements. A detailed statistical analysis is carried out on 133 test results of cylinders 150 ~ 300 mm in size. The tests have been running in laboratories of the Klokner Institute. A single worker took all specimens throughout the period, and the subsequent measurements of the static modulus of elasticity and the compressive strength of the concrete were performed. The measurements were made at the age of 28 days after specimens casting, and only one testing machine with the same capping method was used. Suitable theoretical models of division are determined on the basis of tests in good congruence, with the use of Z2 and the Bernstein criterion. A set of concrete compressive strength (carried out on 133 test results of cylinders 150 ~ 300 mm after test of static modulus of elasticity) shows relatively high skewness in this specific case. This cause that limited beta distribution is better than generally recommended theoretical distribution for strength the normal or lognormal. The modulus of elasticity is not significantly affected due to skewness because the design value is based on mean value.展开更多
Traditional gust load factor(GLF)method,inertial wind load(IWL)method and tri-component method(LRC+IWL)cannot accurately analyze the wind-induced responses of super-large cooling towers,so the real combination formula...Traditional gust load factor(GLF)method,inertial wind load(IWL)method and tri-component method(LRC+IWL)cannot accurately analyze the wind-induced responses of super-large cooling towers,so the real combination formulas of fluctuating wind-induced responses and equivalent static wind loads(ESWLSs)were derived based on structural dynamics and random vibration theory.The consistent coupled method(CCM)was presented to compensate the coupled term between background and resonant response.Taking the super-large cooling tower(H=215 m)of nuclear power plant in Jiangxi Province,China,which is the highest and largest in China,as the example,based on modified equivalent beam-net design method,the aero-elastic model for simultaneous pressure and vibration measurement of super-large cooling tower is firstly carried out.Then,combining wind tunnel test and CCM,the effects of self-excited force on the surface pressures and wind-induced responses are discussed,and the wind-induced response characteristics of background component,resonant component,coupled term between background and resonant response,fluctuating responses,and wind vibration coefficients are discussed.It can be concluded that wind-induced response mechanism must be understood to direct the wind resistant design for super-large cooling towers.展开更多
Based on the statics theory, a novel and feasible twice-suspended-mass method(TSMM) was proposed to deal with the seldom-studied issue of fault diagnosis for damping springs of large vibrating screen(LVS). With the st...Based on the statics theory, a novel and feasible twice-suspended-mass method(TSMM) was proposed to deal with the seldom-studied issue of fault diagnosis for damping springs of large vibrating screen(LVS). With the static balance characteristic of the screen body/surface as well as the deformation compatibility relation of springs considered, static model of the screen surface under a certain load was established to calculate compression deformation of each spring. Accuracy of the model was validated by both an experiment based on the suspended mass method and the properties of the 3D deformation space in a numerical simulation. Furthermore, by adopting the Taylor formula and the control variate method, quantitative relationship between the change of damping spring deformation and the change of spring stiffness, defined as the deformation sensitive coefficient(DSC), was derived mathematically, from which principle of the TSMM for spring fault diagnosis is clarified. In the end, an experiment was carried out and results show that the TSMM is applicable for diagnosing the fault of single spring in a LVS.展开更多
In this study, the static stability of the grasp of a single planar object is analyzed using the potential energy method. In previous papers, we considered cases in which individual fingers were replaced by a multidim...In this study, the static stability of the grasp of a single planar object is analyzed using the potential energy method. In previous papers, we considered cases in which individual fingers were replaced by a multidimensional translational spring model, in which each finger is constructed with prismatic joints. Human hands and the most developed mechanical hands are constructed with revolute joints. In this paper, the effects of fingertip rotation and a revolute joint spring model are investigated. A grasp stiffness matrix is analytically derived by considering not only frictional rolling contact but also frictionless sliding contact. The difl'erence between the frictional stiffness matrix and the frictionless one is analytically obtained. The effect of local curvature at contact points is analytically derived. The grasp displacement directions affected by the change in curvature and the contact condition are also obtained. The derived stiffness matrix of the revolute joint model is compared with that of the prismatic joint model, and then the stiffness relation is clarified. The gravity effect of the object is also considered. The effectiveness of our method is demonstrated through numerical examples. The stability is evaluated by the eigenvalues of the grasp stiffness matrix, and the grasp displacement direction is obtained by the corresponding eigenvectors. The effect of joint angle is also discussed.展开更多
Nonlinear spring characteristics of the tense torsion bar in the gap-closing type electrostatic micromirror are examined. The macro model is introduced for the experimental study. The tension applied in the torsion ba...Nonlinear spring characteristics of the tense torsion bar in the gap-closing type electrostatic micromirror are examined. The macro model is introduced for the experimental study. The tension applied in the torsion bar is well controlled using the electromagnetic attraction. This controllability is suited for clearing the nonlinear nature. The tension is confirmed to have the effect to widen the controllable angle range of the mirror suppressing the pull-in. The pull-in angle is observed to increases to about 74% of the mechanical limit angle at the tension of 0,96 N. This is significantly larger than 44% of the case with the linear spring. The larger resonant frequency is maintained. The hardening of the spring can keep the balance with the electrostatic force over the limit of the linear spring. The observed features are explained reasonably with the combination of twisting and bending displacements of the torsion bar.展开更多
Higher order rnultipole potentials and electrostatic screening effects are introduced to incorporate the dan gling bonds on the surface of a metallic nanopaticle and to modify the coulornb like potential energy terms,...Higher order rnultipole potentials and electrostatic screening effects are introduced to incorporate the dan gling bonds on the surface of a metallic nanopaticle and to modify the coulornb like potential energy terms, respectively. The total interaction energy function for any rnetallic nanoparticle is represented in terms of two- and three-body potentials. The two-body part is described by dipole-dipole interaction potential, and in the three-body part, triple-dipole (DDD) and dipole-dipole-quadrupole (DDQ) terrns are included. The size-dependent cohesive energy and bulk modulus are observed to decrease with decreasing sizes, a result which is in good agreement with the experimental values of Mo and W nanoparticles.展开更多
A method for static aeroelastic analysis based on the high-order panel method and modal method is presented. The static aeroelastic characteristics of flexible wings are investigated using this method. Three-dimension...A method for static aeroelastic analysis based on the high-order panel method and modal method is presented. The static aeroelastic characteristics of flexible wings are investigated using this method. Three-dimensional aerodynamic models of flexible wings are constructed based on the geometry of wing configuration, and the modal method is adopted to achieve the fluid-structure coupling. The static aeroelastic characteristics of the AGARD445.6 wing and a low-aspect-ratio wing are investigated in this study. The influences of elastic structural deformation on aerodynamic forces are studied with an emphasis analyzing the aerodynamic coefficients, wing root loads, structural deformation and pressure distribution of different sections, and results are compared with the results from wind-tunnel tests and the elastic results based on experimental aerodynamic forces. It is concluded that aerodynamic forces can be accurately calculated with the high-order panel method. The method presented in this study is feasible, credible and efficient. Comprehensive static aeroelastic characteristics can be provided by the method for early phases of aircraft design.展开更多
This paper presents a simple and straight-forward static model of the micro-foundations of the environmental Kuznets curve, in which the relationship between income and pollution depends on the relative magnitudes of ...This paper presents a simple and straight-forward static model of the micro-foundations of the environmental Kuznets curve, in which the relationship between income and pollution depends on the relative magnitudes of the diminishing income-compensated price elasticity of environmental amenity and increasing marginal propensity to earn environmental amenity out of non-environment income. The smaller the income-compensated price elasticity and the larger the marginal propensity to earn out of non-environment income, the earlier the turning point emerges. This key feature of our model generalizes the specific features of many existing models and generates many of their implications.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 30370371) and the Natural Science Foundation of Zheji-ang Province (No. 301267), China
文摘The “Huang gua” melons were measured for their physical properties including firmness and static elastic modulus. The vibrational characteristics of fruits and vegetables are governed by their elastic modulus (firmness), mass, and geometry. Therefore, it is possible to evaluate firmness of fruits and vegetables based on their vibrational characteristics. Analysis of the vibration responses of a fruit is suggested for measuring elastic properties (Firmness) non-destructively. The impulse response method is often used to measure firmness of fruits. The fruit was excited using three types of balls (wooden, steel and rubber) and the vibration is detected by an accelerometer. The Instron device was used to measure the static elastic modulus of the inner, middle and outer portions of melon flesh. Finite element (FE) technique was used to determine the optimum excitation location of the chosen measurement sensor and to analyze the mode shape fruits. Four types of mode shapes (torsional or flexural mode shape, first-type, second-type spherical mode and breathing mode shape) were found. Finite element simulation results agreed well with experimental results. Correlation between the firmness and resonant frequency (r2=0.91) and between the resonant frequency and stiffness factor (r2=0.74) existed. The optimum location and suitable direction for excitation and response measurement on the fruit were suggested.
文摘Random behavior of concrete C45/55 XF2 used for prefabricated pre-stressed bridge beams is described on the basis of evaluating a vast set of measurements. A detailed statistical analysis is carried out on 133 test results of cylinders 150 ~ 300 mm in size. The tests have been running in laboratories of the Klokner Institute. A single worker took all specimens throughout the period, and the subsequent measurements of the static modulus of elasticity and the compressive strength of the concrete were performed. The measurements were made at the age of 28 days after specimens casting, and only one testing machine with the same capping method was used. Suitable theoretical models of division are determined on the basis of tests in good congruence, with the use of Z2 and the Bernstein criterion. A set of concrete compressive strength (carried out on 133 test results of cylinders 150 ~ 300 mm after test of static modulus of elasticity) shows relatively high skewness in this specific case. This cause that limited beta distribution is better than generally recommended theoretical distribution for strength the normal or lognormal. The modulus of elasticity is not significantly affected due to skewness because the design value is based on mean value.
基金Projects(50978203,51208254)supported by the National Natural Science Foundation of ChinaProject(BK2012390)supported by Natural Science Foundation of Jiangsu Province,ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Traditional gust load factor(GLF)method,inertial wind load(IWL)method and tri-component method(LRC+IWL)cannot accurately analyze the wind-induced responses of super-large cooling towers,so the real combination formulas of fluctuating wind-induced responses and equivalent static wind loads(ESWLSs)were derived based on structural dynamics and random vibration theory.The consistent coupled method(CCM)was presented to compensate the coupled term between background and resonant response.Taking the super-large cooling tower(H=215 m)of nuclear power plant in Jiangxi Province,China,which is the highest and largest in China,as the example,based on modified equivalent beam-net design method,the aero-elastic model for simultaneous pressure and vibration measurement of super-large cooling tower is firstly carried out.Then,combining wind tunnel test and CCM,the effects of self-excited force on the surface pressures and wind-induced responses are discussed,and the wind-induced response characteristics of background component,resonant component,coupled term between background and resonant response,fluctuating responses,and wind vibration coefficients are discussed.It can be concluded that wind-induced response mechanism must be understood to direct the wind resistant design for super-large cooling towers.
基金Project(20120095110001)supported by the PhD Programs Foundation of Ministry of Education of ChinaProject(51134022,51221462)supported by the National Natural Science Foundation of China+1 种基金Project(CXZZ13_0927)supported by Research and Innovation Program for College Graduates of Jiangsu Province,ChinaProject(2013DXS03)supported by the Fundamental Research Funds for Central Universities of China
文摘Based on the statics theory, a novel and feasible twice-suspended-mass method(TSMM) was proposed to deal with the seldom-studied issue of fault diagnosis for damping springs of large vibrating screen(LVS). With the static balance characteristic of the screen body/surface as well as the deformation compatibility relation of springs considered, static model of the screen surface under a certain load was established to calculate compression deformation of each spring. Accuracy of the model was validated by both an experiment based on the suspended mass method and the properties of the 3D deformation space in a numerical simulation. Furthermore, by adopting the Taylor formula and the control variate method, quantitative relationship between the change of damping spring deformation and the change of spring stiffness, defined as the deformation sensitive coefficient(DSC), was derived mathematically, from which principle of the TSMM for spring fault diagnosis is clarified. In the end, an experiment was carried out and results show that the TSMM is applicable for diagnosing the fault of single spring in a LVS.
文摘In this study, the static stability of the grasp of a single planar object is analyzed using the potential energy method. In previous papers, we considered cases in which individual fingers were replaced by a multidimensional translational spring model, in which each finger is constructed with prismatic joints. Human hands and the most developed mechanical hands are constructed with revolute joints. In this paper, the effects of fingertip rotation and a revolute joint spring model are investigated. A grasp stiffness matrix is analytically derived by considering not only frictional rolling contact but also frictionless sliding contact. The difl'erence between the frictional stiffness matrix and the frictionless one is analytically obtained. The effect of local curvature at contact points is analytically derived. The grasp displacement directions affected by the change in curvature and the contact condition are also obtained. The derived stiffness matrix of the revolute joint model is compared with that of the prismatic joint model, and then the stiffness relation is clarified. The gravity effect of the object is also considered. The effectiveness of our method is demonstrated through numerical examples. The stability is evaluated by the eigenvalues of the grasp stiffness matrix, and the grasp displacement direction is obtained by the corresponding eigenvectors. The effect of joint angle is also discussed.
文摘Nonlinear spring characteristics of the tense torsion bar in the gap-closing type electrostatic micromirror are examined. The macro model is introduced for the experimental study. The tension applied in the torsion bar is well controlled using the electromagnetic attraction. This controllability is suited for clearing the nonlinear nature. The tension is confirmed to have the effect to widen the controllable angle range of the mirror suppressing the pull-in. The pull-in angle is observed to increases to about 74% of the mechanical limit angle at the tension of 0,96 N. This is significantly larger than 44% of the case with the linear spring. The larger resonant frequency is maintained. The hardening of the spring can keep the balance with the electrostatic force over the limit of the linear spring. The observed features are explained reasonably with the combination of twisting and bending displacements of the torsion bar.
基金Supported by King Saud University,College of Science-Research Center,Project Number PHYS/2009/19
文摘Higher order rnultipole potentials and electrostatic screening effects are introduced to incorporate the dan gling bonds on the surface of a metallic nanopaticle and to modify the coulornb like potential energy terms, respectively. The total interaction energy function for any rnetallic nanoparticle is represented in terms of two- and three-body potentials. The two-body part is described by dipole-dipole interaction potential, and in the three-body part, triple-dipole (DDD) and dipole-dipole-quadrupole (DDQ) terrns are included. The size-dependent cohesive energy and bulk modulus are observed to decrease with decreasing sizes, a result which is in good agreement with the experimental values of Mo and W nanoparticles.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60736025, 90716006 and 10902006)the Doctoral Program Foundation of Institutions of Higher Education of China (Grant No. 20091102110015)the Major Programs of China National Space Administration (Grant No. D2120060013)
文摘A method for static aeroelastic analysis based on the high-order panel method and modal method is presented. The static aeroelastic characteristics of flexible wings are investigated using this method. Three-dimensional aerodynamic models of flexible wings are constructed based on the geometry of wing configuration, and the modal method is adopted to achieve the fluid-structure coupling. The static aeroelastic characteristics of the AGARD445.6 wing and a low-aspect-ratio wing are investigated in this study. The influences of elastic structural deformation on aerodynamic forces are studied with an emphasis analyzing the aerodynamic coefficients, wing root loads, structural deformation and pressure distribution of different sections, and results are compared with the results from wind-tunnel tests and the elastic results based on experimental aerodynamic forces. It is concluded that aerodynamic forces can be accurately calculated with the high-order panel method. The method presented in this study is feasible, credible and efficient. Comprehensive static aeroelastic characteristics can be provided by the method for early phases of aircraft design.
基金We thank the two anonymous referees, the editors, and Youping Li for helpful comments and suggestions. This research was supported by the National Natural Science Foundation of China (71273092), the Humanity and Social Science Foundation of Ministry of Education of China (10YJCZH108), and the Fundamental Research Funds for Central Universities of China.
文摘This paper presents a simple and straight-forward static model of the micro-foundations of the environmental Kuznets curve, in which the relationship between income and pollution depends on the relative magnitudes of the diminishing income-compensated price elasticity of environmental amenity and increasing marginal propensity to earn environmental amenity out of non-environment income. The smaller the income-compensated price elasticity and the larger the marginal propensity to earn out of non-environment income, the earlier the turning point emerges. This key feature of our model generalizes the specific features of many existing models and generates many of their implications.