期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
面向半稠密三维重建的改进单目ORB-SLAM 被引量:9
1
作者 周彦 旷鸿章 +2 位作者 牟金震 王冬丽 刘宗明 《计算机工程与应用》 CSCD 北大核心 2021年第8期180-184,共5页
构建更详细的地图以及估计更精准的相机位姿一直都是同时定位与地图构建(Simultaneous Localization And Mapping,SLAM)技术所追求的目标,但是以上目标与实时性要求、较低的计算代价和受限的计算资源条件是相矛盾的。提出一种在单目ORB-... 构建更详细的地图以及估计更精准的相机位姿一直都是同时定位与地图构建(Simultaneous Localization And Mapping,SLAM)技术所追求的目标,但是以上目标与实时性要求、较低的计算代价和受限的计算资源条件是相矛盾的。提出一种在单目ORB-SLAM(Oriented FAST and Rotated BRIEF-SLAM)方法的基础上利用关键帧中提取到的直线特征进行半稠密三维重建的方法。由ORB-SLAM实时提供一组关键帧及其对应的相机位姿信息和一系列地图点,提出一种关键帧再剔除算法进一步减少冗余帧数目,使用直线段提取方法提取各帧中的直线段,使用纯几何约束方法对以上检测得到的直线段进行匹配,生成一个由直线段构成的半稠密三维场景模型。实验结果表明新方法持续稳定的运行,能在低计算代价条件下快速地在线三维重建。 展开更多
关键词 单目视觉 稠密 三维重建 同时定位与地图构建 关键帧再剔除
下载PDF
面向嵌入式平台的单目ORB-SLAM稠密化建图实现 被引量:3
2
作者 马靖煊 王红雨 +3 位作者 曹彦 乔文超 韩佼志 吴昌学 《计算机工程与应用》 CSCD 北大核心 2022年第16期213-218,共6页
针对现有方法在机器人室内定位中无法同时满足高精度定位、快速处理及稠密地图重建的问题,在拥有跟踪、地图构建和回环检测三线程的ORB-SLAM3系统基础上设计了三维稠密地图构建算法,分别在跟踪阶段、局部光束法平差阶段(bundle adjustme... 针对现有方法在机器人室内定位中无法同时满足高精度定位、快速处理及稠密地图重建的问题,在拥有跟踪、地图构建和回环检测三线程的ORB-SLAM3系统基础上设计了三维稠密地图构建算法,分别在跟踪阶段、局部光束法平差阶段(bundle adjustment,BA)和全局BA阶段,对满足需求的关键帧进行二次采样和位姿更新,然后通过关键帧和对应位姿计算得到三维点云,最终获得稠密地图。实验结果表明,所提方法在Jetson AGX Xavier嵌入式平台上对TUM数据集的定位速度达到了10.8 frame/s,均方根误差仅有0.213%,验证了该系统的高精度与快速性,可以满足机器人室内定位与建图需求。 展开更多
关键词 稠密 室内定位 同时定位与地图构建(SLAM) 深度相机 关键帧 三维重建
下载PDF
自适应窗隔匹配与深度学习相结合的RGB-D SLAM算法 被引量:2
3
作者 余东应 刘桂华 +2 位作者 曾维林 冯波 张文凯 《计算机工程》 CAS CSCD 北大核心 2021年第8期224-233,共10页
在动态场景的SLAM系统中,传统的特征点法视觉SLAM系统易受动态物体的影响,使得图像前后两帧的动态物体区域出现大量的误匹配,导致机器人定位精度不高。为此,提出一种结合自适应窗隔匹配模型与深度学习算法的动态场景RGB-D SLAM算法。构... 在动态场景的SLAM系统中,传统的特征点法视觉SLAM系统易受动态物体的影响,使得图像前后两帧的动态物体区域出现大量的误匹配,导致机器人定位精度不高。为此,提出一种结合自适应窗隔匹配模型与深度学习算法的动态场景RGB-D SLAM算法。构建基于自适应窗隔匹配模型的视觉SLAM前端算法框架,该框架筛选图像帧后采用基于网格的概率运动统计方式实现匹配点筛选,以获得静态区域的特征匹配点对,然后使用恒速度模型或参考帧模型实现位姿估计。利用深度学习算法Mask R-CNN提供的语义信息进行动态场景的静态三维稠密地图构建。在TUM数据集和实际环境中进行算法性能验证,结果表明,该算法在动态场景下的定位精度和跟踪速度均优于ORB-SLAM2及DynaSLAM系统,在全长为6.62 m的高动态场景中定位精度可达1.475 cm,平均跟踪时间为0.024 s。 展开更多
关键词 动态场景 自适应窗隔匹配 静态区域特征匹配 深度学习 静态三维稠密地图构建
下载PDF
基于目标检测的室内动态场景定位与建图 被引量:3
4
作者 席志红 温家旭 《计算机应用》 CSCD 北大核心 2022年第9期2853-2857,共5页
针对室内场景中动态对象严重影响相机位姿估计准确性的问题,提出一种基于目标检测的室内动态场景同步定位与地图构建(SLAM)系统。当相机捕获图像后,首先,利用YOLOv4目标检测网络检测环境中的动态对象,并生成对应边界框的掩膜区域;然后,... 针对室内场景中动态对象严重影响相机位姿估计准确性的问题,提出一种基于目标检测的室内动态场景同步定位与地图构建(SLAM)系统。当相机捕获图像后,首先,利用YOLOv4目标检测网络检测环境中的动态对象,并生成对应边界框的掩膜区域;然后,提取图像中的ORB特征点,并将掩膜区域内部的特征点剔除掉;同时结合GMS算法进一步剔除误匹配,并仅利用剩余静态特征点来估计相机位姿;最后,完成滤除动态对象的静态稠密点云地图和八叉树地图的构建。在TUM RGB-D公开数据集上进行的多次对比测试的结果表明,相对于ORB-SLAM2系统、GCNv2_SLAM系统和YOLOv4+ORB-SLAM2系统,所提系统在绝对轨迹误差(ATE)和相对位姿误差(RPE)上有明显的降低,说明该系统能够显著提高室内动态环境中相机位姿估计的准确性。 展开更多
关键词 同步定位与地图构建 YOLOv4目标检测 GMS 静态稠密点云地图 八叉树地图
下载PDF
基于VI-SLAM的四旋翼自主飞行与三维稠密重构 被引量:7
5
作者 林辉灿 吕强 +2 位作者 卫恒 王阳 梁冰 《光学学报》 EI CAS CSCD 北大核心 2018年第7期215-222,共8页
提出全自主的微型飞行器,使用板载传感器实现三维的同时定位与稠密重构。在ORB-SLAM系统的基础上,基于扩展卡尔曼滤波器实现了视觉-惯导的传感器融合,提高了系统的稳健性和精度以满足微型飞行器自主飞行的要求。由于ORB-SLAM系统创建的... 提出全自主的微型飞行器,使用板载传感器实现三维的同时定位与稠密重构。在ORB-SLAM系统的基础上,基于扩展卡尔曼滤波器实现了视觉-惯导的传感器融合,提高了系统的稳健性和精度以满足微型飞行器自主飞行的要求。由于ORB-SLAM系统创建的稀疏的特征地图不能用于微型飞行器的避障和导航,使用双目摄像机提出了改进的构建地图的方法,由稀疏特征点地图扩展为稠密的八叉树地图。通过EuRoC数据集进行评估,可以验证本文算法较基于关键帧的视觉-惯导算法平均精度提升了1倍。将本文算法应用于所搭建的四旋翼自主飞行平台,仅依靠板载传感器和处理器,实现了全自主飞行与稠密地图构建,验证了本文算法的有效性和稳健性。 展开更多
关键词 机器视觉 同时定位与地图构建 传感器融合 微型飞行器 三维稠密重构
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部