The direct current-direct current (DC-DC) converter is designed for 1 T static random access memory (SRAM) used in display driver integrated circuits (ICs), which consists of positive word-line voltage (VpwL),...The direct current-direct current (DC-DC) converter is designed for 1 T static random access memory (SRAM) used in display driver integrated circuits (ICs), which consists of positive word-line voltage (VpwL), negative word-line voltage (VinyL) and half-VDD voltage (VHDo) generator. To generate a process voltage temperature (PVT)-insensitive VpWL and VNWL, a set of circuits were proposed to generate reference voltages using bandgap reference current generators for respective voltage level detectors. Also, a VOWL regulator and a VNWL charge pump were proposed for a small-area and low-power design. The proposed VpwL regulator can provide a large driving current with a small area since it regulates an input voltage (VCI) from 2.5 to 3.3 V. The VmvL charge pump can be implemented as a high-efficiency circuit with a small area and low power since it can transfer pumped charges to VNWL node entirely. The DC-DC converter for 1 T SRAM were designed with 0.11 μm mixed signal process and operated well with satisfactory measurement results.展开更多
基金supported by the Second Stage of Brain Korea 21 Projectsfinancially supported by Changwon National University in 2011-2013
文摘The direct current-direct current (DC-DC) converter is designed for 1 T static random access memory (SRAM) used in display driver integrated circuits (ICs), which consists of positive word-line voltage (VpwL), negative word-line voltage (VinyL) and half-VDD voltage (VHDo) generator. To generate a process voltage temperature (PVT)-insensitive VpWL and VNWL, a set of circuits were proposed to generate reference voltages using bandgap reference current generators for respective voltage level detectors. Also, a VOWL regulator and a VNWL charge pump were proposed for a small-area and low-power design. The proposed VpwL regulator can provide a large driving current with a small area since it regulates an input voltage (VCI) from 2.5 to 3.3 V. The VmvL charge pump can be implemented as a high-efficiency circuit with a small area and low power since it can transfer pumped charges to VNWL node entirely. The DC-DC converter for 1 T SRAM were designed with 0.11 μm mixed signal process and operated well with satisfactory measurement results.