To reveal the water inrush mechanics of underground deep rock mass subjected to dynamic disturbance such as blasting, compression-shear rock crack initiation rule and the evolution of crack tip stress intensity factor...To reveal the water inrush mechanics of underground deep rock mass subjected to dynamic disturbance such as blasting, compression-shear rock crack initiation rule and the evolution of crack tip stress intensity factor are analyzed under static-dynamic loading and seepage water pressure on the basis of theoretical deduction and experimental research. It is shown that the major influence factors of the crack tip stress intensity factor are seepage pressure, dynamic load, static stress and crack angle. The existence of seepage water pressure aggravates propagation of branch cracks. With the seepage pressure increasing, the branch crack experiences unstable extension from stable propagation. The dynamic load in the direction of maximum main stress increases type I crack tip stress intensity factor and its influence on type II crack intensity factor is related with crack angle and material property. Crack initiation angle changes with the dynamic load. The initial crack initiation angle of type I dynamic crack fracture is 70.5°. The compression-shear crack initial strength is related to seepage pressure, confining pressure, and dynamic load. Experimental results verify that the initial crack strength increases with the confining pressure increasing, and decreases with the seepage pressure increasing.展开更多
The absorption cross section of the static Einstein-Maxwell dilaton axion (EMDA) black hole for scalar particles is investigated. It is shown that the ratio of the absorption cross section of the EMDA black hole to ...The absorption cross section of the static Einstein-Maxwell dilaton axion (EMDA) black hole for scalar particles is investigated. It is shown that the ratio of the absorption cross section of the EMDA black hole to that of the Schwarzschild black hole decreases as the absolute value of the dilaton increases, and it becomes zero as the dilaton tends to its extremal value. It is also shown that the absorption cross section decreases as both the v and the absolute value of the dilaton increase, and it decreases as the mass of the particle decreases.展开更多
基金Projects(51174228,51174088,51204068,51274097)supported by the National Natural Science Foundation of China
文摘To reveal the water inrush mechanics of underground deep rock mass subjected to dynamic disturbance such as blasting, compression-shear rock crack initiation rule and the evolution of crack tip stress intensity factor are analyzed under static-dynamic loading and seepage water pressure on the basis of theoretical deduction and experimental research. It is shown that the major influence factors of the crack tip stress intensity factor are seepage pressure, dynamic load, static stress and crack angle. The existence of seepage water pressure aggravates propagation of branch cracks. With the seepage pressure increasing, the branch crack experiences unstable extension from stable propagation. The dynamic load in the direction of maximum main stress increases type I crack tip stress intensity factor and its influence on type II crack intensity factor is related with crack angle and material property. Crack initiation angle changes with the dynamic load. The initial crack initiation angle of type I dynamic crack fracture is 70.5°. The compression-shear crack initial strength is related to seepage pressure, confining pressure, and dynamic load. Experimental results verify that the initial crack strength increases with the confining pressure increasing, and decreases with the seepage pressure increasing.
基金The project supported by National Natural Science Foundation of China under Grant No. 10473004, the FANEDD under Grant No. 200317, the SRFDP under Grant No. 20040542003, and the Key Project of Natural Science Foundation of Hunan Province of China under Grant No. 05JJ0001
文摘The absorption cross section of the static Einstein-Maxwell dilaton axion (EMDA) black hole for scalar particles is investigated. It is shown that the ratio of the absorption cross section of the EMDA black hole to that of the Schwarzschild black hole decreases as the absolute value of the dilaton increases, and it becomes zero as the dilaton tends to its extremal value. It is also shown that the absorption cross section decreases as both the v and the absolute value of the dilaton increase, and it decreases as the mass of the particle decreases.