The static voltage stability of the power system integrating wind farms adopting different kinds of wind turbines is analyzed. Through the simulation of one certain local power grid in Xinjiang Uygur Autonomous Region...The static voltage stability of the power system integrating wind farms adopting different kinds of wind turbines is analyzed. Through the simulation of one certain local power grid in Xinjiang Uygur Autonomous Region, the PV curves at the point of common coupling (PCC), key buses and important substations are plotted; the variation of voltage as well as the limit and margin of static stability are analyzed. It is resulted from the simulation that the limit of static voltage at weak nodes is lower, and the static voltage of the power system with wind farms adopting doubly-fed induction generators (DFIG) is more stable than that with wind farms adopting common asynchronous generators.展开更多
The conversion of electromagnetic energy into heat by nanomagnets has the potential to be a powerful, non-invasive technique for cancer therapy by hyperthermia and hyperthermia-based drug release, while temperature co...The conversion of electromagnetic energy into heat by nanomagnets has the potential to be a powerful, non-invasive technique for cancer therapy by hyperthermia and hyperthermia-based drug release, while temperature controllability and targeted heating are challenges to developing applications of such magnetic inductive hyperthermia. This study was designed to control the hyperthermia position and area using a combination of alternating current (AC) and a static magnetic field. MnZn ferrite (MZF) nanoparticles which exhibited excellent hyperthermia properties were first prepared and characterized as an inductive heating mediator. We built model static magnetic fields simply using a pair of permanent magnets and studied the static magnetic field distributions by measurements and numerical simulations. The influence of the transverse static magnetic fields on hyperthermia properties was then investigated on MZF magnetic fluid, gel phantoms and SMMC-7721 cells in vitro. The results showed a static magnetic field can inhibit the temperature rise of MZF nanoparticles in an AC magnetic field. But in the uneven static magnetic field formed by a magnet pair with repelling poles face-to-face, the heating area can be restricted in a central low static field; meanwhile the side effects of hyperthermia can be reduced by a surrounding high static field. As a result we can position the hyperthermia area, protect the non-therapeutic area, and reduce the side effects lust by using a well-designed combination of AC and static field.展开更多
基金National Natural Science Foundation of China(5076700350867004)Autonomous university research projects(XJEDU2007105)
文摘The static voltage stability of the power system integrating wind farms adopting different kinds of wind turbines is analyzed. Through the simulation of one certain local power grid in Xinjiang Uygur Autonomous Region, the PV curves at the point of common coupling (PCC), key buses and important substations are plotted; the variation of voltage as well as the limit and margin of static stability are analyzed. It is resulted from the simulation that the limit of static voltage at weak nodes is lower, and the static voltage of the power system with wind farms adopting doubly-fed induction generators (DFIG) is more stable than that with wind farms adopting common asynchronous generators.
文摘The conversion of electromagnetic energy into heat by nanomagnets has the potential to be a powerful, non-invasive technique for cancer therapy by hyperthermia and hyperthermia-based drug release, while temperature controllability and targeted heating are challenges to developing applications of such magnetic inductive hyperthermia. This study was designed to control the hyperthermia position and area using a combination of alternating current (AC) and a static magnetic field. MnZn ferrite (MZF) nanoparticles which exhibited excellent hyperthermia properties were first prepared and characterized as an inductive heating mediator. We built model static magnetic fields simply using a pair of permanent magnets and studied the static magnetic field distributions by measurements and numerical simulations. The influence of the transverse static magnetic fields on hyperthermia properties was then investigated on MZF magnetic fluid, gel phantoms and SMMC-7721 cells in vitro. The results showed a static magnetic field can inhibit the temperature rise of MZF nanoparticles in an AC magnetic field. But in the uneven static magnetic field formed by a magnet pair with repelling poles face-to-face, the heating area can be restricted in a central low static field; meanwhile the side effects of hyperthermia can be reduced by a surrounding high static field. As a result we can position the hyperthermia area, protect the non-therapeutic area, and reduce the side effects lust by using a well-designed combination of AC and static field.