To get a deep understanding of the evolution behavior of equiaxedαphase in Ti−8Al−1Mo−1V alloy during annealing,its static coarsening mechanism was studied based on the calculations of coarsening exponent n and the a...To get a deep understanding of the evolution behavior of equiaxedαphase in Ti−8Al−1Mo−1V alloy during annealing,its static coarsening mechanism was studied based on the calculations of coarsening exponent n and the activation energy forαboundary migration.The result of n=6 indicates a special coarsening mechanism of equiaxedαphase.The activation energy forαboundary migration is calculated to be 138 kJ/mol,which is close to the activation energy for grain growth of pureα-Ti.It is revealed that the coarsening of equiaxedαcan be mainly attributed to the self-diffusion of Ti atoms across theα/αboundaries.Based on the experimental findings,a static coarsening kinetics model of equiaxedαgrains in theα+βfield is established.At last,the effects of the coarsening behavior of equiaxedαon tensile properties were studied.展开更多
基金financial supports from the China Scholarship Council(No.201906935013)the National Natural Science Foundation of China(No.51801132).
文摘To get a deep understanding of the evolution behavior of equiaxedαphase in Ti−8Al−1Mo−1V alloy during annealing,its static coarsening mechanism was studied based on the calculations of coarsening exponent n and the activation energy forαboundary migration.The result of n=6 indicates a special coarsening mechanism of equiaxedαphase.The activation energy forαboundary migration is calculated to be 138 kJ/mol,which is close to the activation energy for grain growth of pureα-Ti.It is revealed that the coarsening of equiaxedαcan be mainly attributed to the self-diffusion of Ti atoms across theα/αboundaries.Based on the experimental findings,a static coarsening kinetics model of equiaxedαgrains in theα+βfield is established.At last,the effects of the coarsening behavior of equiaxedαon tensile properties were studied.