针对基于混合物理论的两相多孔介质模型 ,采用 Galerkin加权残值有限元法 ,导出求解拟静态问题的基于 u S- u F- p变量的混合有限元方程 ,由于系统方程的系数矩阵非正定 ,进而针对该方程组提出了一种迭代求解方法 ,并由分片试验得出节...针对基于混合物理论的两相多孔介质模型 ,采用 Galerkin加权残值有限元法 ,导出求解拟静态问题的基于 u S- u F- p变量的混合有限元方程 ,由于系统方程的系数矩阵非正定 ,进而针对该方程组提出了一种迭代求解方法 ,并由分片试验得出节点压力插值函数的阶须低于固体相节点位移插值函数的阶的结论。算例结果表明 ,采用基于 u S- u F- p变量的混合法计算所得的固体相和流体相速度以及固体相的有效应力与罚方法一致 ,而压力值的精度高于罚方法。展开更多
文摘针对基于混合物理论的两相多孔介质模型 ,采用 Galerkin加权残值有限元法 ,导出求解拟静态问题的基于 u S- u F- p变量的混合有限元方程 ,由于系统方程的系数矩阵非正定 ,进而针对该方程组提出了一种迭代求解方法 ,并由分片试验得出节点压力插值函数的阶须低于固体相节点位移插值函数的阶的结论。算例结果表明 ,采用基于 u S- u F- p变量的混合法计算所得的固体相和流体相速度以及固体相的有效应力与罚方法一致 ,而压力值的精度高于罚方法。