The structure and working principle of a self-deigned high pressure electronic pneumatic pressure reducing valve (EPPRV) with slide pilot are introduced.The resistance value formulas and the relationship between the r...The structure and working principle of a self-deigned high pressure electronic pneumatic pressure reducing valve (EPPRV) with slide pilot are introduced.The resistance value formulas and the relationship between the resistance and pressure of three typical pneumatic resistances are obtained.Then,the method of static characteristics analysis only considering pneumatic resistances is proposed,the resistance network from gas supply to load is built up,and the mathematical model is derived from the flow rate formulas and flow conservation equations,with the compressibility of high pressure gas and temperature drop during the expansion considered in the model.Finally,the pilot spool displacement of 1.5 mm at an output pressure of 15MPa and the enlarging operating stroke of the pilot spool are taken as optimization targets,and the optimization is carried out based on genetic algorithm and the model mentioned above.The results show that the static characteristics of the EPPRV are significantly improved.The idea of static characteristics analysis and optimization based on pneumatic resistance network is valuable for the design of pneumatic components or system.展开更多
In this study, the size distribution of atmospheric aerosol in Beijing was monitored by the scanning mobility particle sizer spectrometer and the optical particle sizer. The size of particles in atmospheric aerosol wa...In this study, the size distribution of atmospheric aerosol in Beijing was monitored by the scanning mobility particle sizer spectrometer and the optical particle sizer. The size of particles in atmospheric aerosol was primarily distributed in the range of less than 1 pm. It showed different changes with the mass concentrations of particulate matters with an aerodynamic diameter of 〈2.5 pm (PM2.5) for different sizes of fine particles. The amount of ultrafine particles (less than about 60 nm) decreased while the larger ones (〉60 nm) increased along with the mass concentration of PM2.5 in atmospheric aerosol. This was be- cause of the formation of the secondary atmospheric aerosol. The polylactic acid (PLA) nanofibers were prepared for filtering the aerosol by electrospinning. PLA nanofiber mats were used as the middle layer to design the composite filter membranes. Atmospheric aerosol was used as dust source in the filtration test. The results showed that the filtration efficiency of the com- posite filter media increased along with the thickness of nanofiber mats, which was controlled by the collection time during electrospinning. Filtration efficiency can be improved obviously by compositing with a thin layer of nanofibers.展开更多
基金Project(50575202) supported by the National Natural Science Foundation of China
文摘The structure and working principle of a self-deigned high pressure electronic pneumatic pressure reducing valve (EPPRV) with slide pilot are introduced.The resistance value formulas and the relationship between the resistance and pressure of three typical pneumatic resistances are obtained.Then,the method of static characteristics analysis only considering pneumatic resistances is proposed,the resistance network from gas supply to load is built up,and the mathematical model is derived from the flow rate formulas and flow conservation equations,with the compressibility of high pressure gas and temperature drop during the expansion considered in the model.Finally,the pilot spool displacement of 1.5 mm at an output pressure of 15MPa and the enlarging operating stroke of the pilot spool are taken as optimization targets,and the optimization is carried out based on genetic algorithm and the model mentioned above.The results show that the static characteristics of the EPPRV are significantly improved.The idea of static characteristics analysis and optimization based on pneumatic resistance network is valuable for the design of pneumatic components or system.
文摘In this study, the size distribution of atmospheric aerosol in Beijing was monitored by the scanning mobility particle sizer spectrometer and the optical particle sizer. The size of particles in atmospheric aerosol was primarily distributed in the range of less than 1 pm. It showed different changes with the mass concentrations of particulate matters with an aerodynamic diameter of 〈2.5 pm (PM2.5) for different sizes of fine particles. The amount of ultrafine particles (less than about 60 nm) decreased while the larger ones (〉60 nm) increased along with the mass concentration of PM2.5 in atmospheric aerosol. This was be- cause of the formation of the secondary atmospheric aerosol. The polylactic acid (PLA) nanofibers were prepared for filtering the aerosol by electrospinning. PLA nanofiber mats were used as the middle layer to design the composite filter membranes. Atmospheric aerosol was used as dust source in the filtration test. The results showed that the filtration efficiency of the com- posite filter media increased along with the thickness of nanofiber mats, which was controlled by the collection time during electrospinning. Filtration efficiency can be improved obviously by compositing with a thin layer of nanofibers.