Galactosylated chitosan (GC) is synthesized and used to prepare IL-1Ra loaded GC nanoparticles by an electrospraying technique. Polyethylene oxide (PEO) is mixed with GC to enhance the electrospraying ability. The...Galactosylated chitosan (GC) is synthesized and used to prepare IL-1Ra loaded GC nanoparticles by an electrospraying technique. Polyethylene oxide (PEO) is mixed with GC to enhance the electrospraying ability. The effect of the spraying solution properties on particle formation is investigated. The IL-1Ra loaded nanoparticles with an average diameter of 530 nm and a regularly spherical shape are observed by the scanning electron microscopy (SEM). The amount of the IL-1Ra is measured by the enzyme-linked immunosorbent assay (ELISA) kit. The loading capacity of the nanoparticle is (1.52± 0.04)% (n = 3) and the encapsulation efficiency reaches (90. 36 ± 3.46) % (n = 3). For the evaluation of GC nanoparticles' hepatocytes targeting efficacy, hepatocytes and mesenchymal stem cells (MSCs) are incubated with FITC-labeled GC nanoparticles for 24 h as the experimental and control groups. Results of the fluorescence microscope show that the fluorescence signals observed in hepatocytes are significantly higher than in the MSCs, indicating that the developed GC nanoparticles have an obvious liver targeting property.展开更多
基金The National Natural Science Foundation of China(No.30901431)the Natural Science Foundation of Jiangsu Province(No.BK2010242)
文摘Galactosylated chitosan (GC) is synthesized and used to prepare IL-1Ra loaded GC nanoparticles by an electrospraying technique. Polyethylene oxide (PEO) is mixed with GC to enhance the electrospraying ability. The effect of the spraying solution properties on particle formation is investigated. The IL-1Ra loaded nanoparticles with an average diameter of 530 nm and a regularly spherical shape are observed by the scanning electron microscopy (SEM). The amount of the IL-1Ra is measured by the enzyme-linked immunosorbent assay (ELISA) kit. The loading capacity of the nanoparticle is (1.52± 0.04)% (n = 3) and the encapsulation efficiency reaches (90. 36 ± 3.46) % (n = 3). For the evaluation of GC nanoparticles' hepatocytes targeting efficacy, hepatocytes and mesenchymal stem cells (MSCs) are incubated with FITC-labeled GC nanoparticles for 24 h as the experimental and control groups. Results of the fluorescence microscope show that the fluorescence signals observed in hepatocytes are significantly higher than in the MSCs, indicating that the developed GC nanoparticles have an obvious liver targeting property.