The role of Nil(NO3)2 in the preparation of a magnetic activated carbon is reported in this paper. Magnetic coal-based activated carbons (MCAC) were prepared from Taixi anthracite with low ash content in the prese...The role of Nil(NO3)2 in the preparation of a magnetic activated carbon is reported in this paper. Magnetic coal-based activated carbons (MCAC) were prepared from Taixi anthracite with low ash content in the presence of Ni(NO3)2. The MCAC materials were characterized by a vibrating sample magnetometer (VSM), X-ray diffraction (XRD), a scanning electric microscope (SEM), and by N2 adsorption. The cylindri- cal precursors and derived char were also subjected to thermogravimetric analysis to compare their behavior of weight losses during carbonization. The results show that MCAC has a larger surface area (1074 m21g) and a higher pore volume (0.5792 cm3/g) with enhanced mesopore ratio (by about 10~). It also has a high saturation magnetization (1.6749 emu/g) and low coercivity (43.26 Oe), which allows the material to be magnetically separated. The MCAC is easily magnetized because the nickel salt is con- vetted into Ni during carbonization and activation. Metallic Ni has a strong magnetism on account of electrostatic interaction. Added Ni(NO3)2 catalyzes the carbonization and activation process by accelerat- ing burn off of the carbon, which contributes to the development of mesopores and macropores in the activated carbon.展开更多
A method using multiple mirror images of point charges is put forward to analyze the polarization of two identical conductor spheres in a uniform electrostatic field.By use of the method,the electric field distributio...A method using multiple mirror images of point charges is put forward to analyze the polarization of two identical conductor spheres in a uniform electrostatic field.By use of the method,the electric field distribution and the interaction force between two spheres can be calculated accurately even for very small gap between two spheres.Our results show that the magnitude of the product of the gap between two spheres and the local electric field in the center of the gap is approximately in the same order and the interaction between two spheres increases very fast as the two spheres are close to each other.We also show that the interaction force between two conductor spheres is almost same with that between two dielectric spheres with high permittivity.展开更多
Apparent polarization energy of the localized charge in organic solids consists of electronic polarization energy, permanent electrostatic interactions, and inter/intra molecular relaxation energies. The effective ele...Apparent polarization energy of the localized charge in organic solids consists of electronic polarization energy, permanent electrostatic interactions, and inter/intra molecular relaxation energies. The effective electronic polarization energies for an electron/hole carrier were successfully estimated by AMOEBA polarizable force field in naphthalene molecular crystals. Both electronic polarization energy and permanent electrostatic interaction were in agreement with the preview experimental values. In addition, the influence of the multipoles from different distributed mutipole analysis (DMA) fitting options on the electro- static interactions are discussed in this paper. We found that the multipoles obtained from Gauss-Hermite quadrature without diffuse function or grid-based quadrature with 0.325 A H atomic radius will give reasonable electronic polarization energies and permanent interactions for electron and hole carriers.展开更多
The binding of Endonuclease colicin 9 (E9) by Immunity protein 9 (Im9) was found to involve some hotspots from helix III of Im9 on protein-protein interface that contribute the dominant binding energy to the complex.I...The binding of Endonuclease colicin 9 (E9) by Immunity protein 9 (Im9) was found to involve some hotspots from helix III of Im9 on protein-protein interface that contribute the dominant binding energy to the complex.In the current work,MD simulations of the WT and three hotspot mutants (D51A,Y54A and Y55A of Im9) of the E9-Im9 complexes were carried out to investigate specific interaction mechanisms of these three hotspot residues.The changes of binding energy between the WT and mutants of the complex were computed by the MM/PBSA method using a polarized force field and were in excellent agreement with experiment values,verifying that these three residues were indeed hotspots of the binding complex.Energy decomposition analysis revealed that binding by D51 to E9 was dominated by electrostatic interaction due to the presence of the carboxyl group of Asp51 which hydrogen bonds to K89.For binding by hotspots Y54 and Y55,van der Waals interaction from the aromatic side chain of tyrosine provided the dominant interaction.For comparison,calculation by using the standard (nonpolarizable) AMBER99SB force field produced binding energy changes from these mutations in opposite direction to the experimental observation.Dynamic hydrogen bond analysis showed that conformations sampled from MD simulation in the standard AMBER force field were distorted from the native state and they disrupted the inter-protein hydrogen bond network of the protein-protein complex.The current work further demonstrated that electrostatic polarization plays a critical role in modulating protein-protein binding.展开更多
基金support by the National Natural Science Foundation of China (No. 20776150)the National Hi-Tech Research and Development Program of China(No. 2008AA05Z308)the Special Fund for Basic Scientific Research of Central Colleges (No. 2009QH15)
文摘The role of Nil(NO3)2 in the preparation of a magnetic activated carbon is reported in this paper. Magnetic coal-based activated carbons (MCAC) were prepared from Taixi anthracite with low ash content in the presence of Ni(NO3)2. The MCAC materials were characterized by a vibrating sample magnetometer (VSM), X-ray diffraction (XRD), a scanning electric microscope (SEM), and by N2 adsorption. The cylindri- cal precursors and derived char were also subjected to thermogravimetric analysis to compare their behavior of weight losses during carbonization. The results show that MCAC has a larger surface area (1074 m21g) and a higher pore volume (0.5792 cm3/g) with enhanced mesopore ratio (by about 10~). It also has a high saturation magnetization (1.6749 emu/g) and low coercivity (43.26 Oe), which allows the material to be magnetically separated. The MCAC is easily magnetized because the nickel salt is con- vetted into Ni during carbonization and activation. Metallic Ni has a strong magnetism on account of electrostatic interaction. Added Ni(NO3)2 catalyzes the carbonization and activation process by accelerat- ing burn off of the carbon, which contributes to the development of mesopores and macropores in the activated carbon.
基金Supported by Guizhou Provincial Science and Technology Foundation (Z103167)Youth Foundation of Guizhou University (X092012)+1 种基金the National Basic Research Program of China under Grant No. 2009CB930800National Natural Science Foundation of China under Grant Nos. 10674157 and 10875166
文摘A method using multiple mirror images of point charges is put forward to analyze the polarization of two identical conductor spheres in a uniform electrostatic field.By use of the method,the electric field distribution and the interaction force between two spheres can be calculated accurately even for very small gap between two spheres.Our results show that the magnitude of the product of the gap between two spheres and the local electric field in the center of the gap is approximately in the same order and the interaction between two spheres increases very fast as the two spheres are close to each other.We also show that the interaction force between two conductor spheres is almost same with that between two dielectric spheres with high permittivity.
基金supported by the National Natural Science Foundation of China(21173138,21173139)the Fundamental Research Funds for the Central Universities(GK201303004)
文摘Apparent polarization energy of the localized charge in organic solids consists of electronic polarization energy, permanent electrostatic interactions, and inter/intra molecular relaxation energies. The effective electronic polarization energies for an electron/hole carrier were successfully estimated by AMOEBA polarizable force field in naphthalene molecular crystals. Both electronic polarization energy and permanent electrostatic interaction were in agreement with the preview experimental values. In addition, the influence of the multipoles from different distributed mutipole analysis (DMA) fitting options on the electro- static interactions are discussed in this paper. We found that the multipoles obtained from Gauss-Hermite quadrature without diffuse function or grid-based quadrature with 0.325 A H atomic radius will give reasonable electronic polarization energies and permanent interactions for electron and hole carriers.
基金the National Natural Science Foundation of China(21003048,10974054,and 20933002)Shanghai PuJiang Program (09PJ1404000) for financial support XXY is also supported by "Scientific Research Foundation for Agricultural Machinery Bureau of Jiangsu Province (gxz10008)"CGJ is also supported by "the Fundamental Research Funds for the Central Universities"
文摘The binding of Endonuclease colicin 9 (E9) by Immunity protein 9 (Im9) was found to involve some hotspots from helix III of Im9 on protein-protein interface that contribute the dominant binding energy to the complex.In the current work,MD simulations of the WT and three hotspot mutants (D51A,Y54A and Y55A of Im9) of the E9-Im9 complexes were carried out to investigate specific interaction mechanisms of these three hotspot residues.The changes of binding energy between the WT and mutants of the complex were computed by the MM/PBSA method using a polarized force field and were in excellent agreement with experiment values,verifying that these three residues were indeed hotspots of the binding complex.Energy decomposition analysis revealed that binding by D51 to E9 was dominated by electrostatic interaction due to the presence of the carboxyl group of Asp51 which hydrogen bonds to K89.For binding by hotspots Y54 and Y55,van der Waals interaction from the aromatic side chain of tyrosine provided the dominant interaction.For comparison,calculation by using the standard (nonpolarizable) AMBER99SB force field produced binding energy changes from these mutations in opposite direction to the experimental observation.Dynamic hydrogen bond analysis showed that conformations sampled from MD simulation in the standard AMBER force field were distorted from the native state and they disrupted the inter-protein hydrogen bond network of the protein-protein complex.The current work further demonstrated that electrostatic polarization plays a critical role in modulating protein-protein binding.