Computer simulation with Monte Carlo is an important tool to investigate the function and equilibrium properties of many biological and soft matter materials solvable in solvents.The appropriate treatment of long-rang...Computer simulation with Monte Carlo is an important tool to investigate the function and equilibrium properties of many biological and soft matter materials solvable in solvents.The appropriate treatment of long-range electrostatic interaction is essential for these charged systems,but remains a challenging problem for large-scale simulations.We develop an efficient Barnes-Hut treecode algorithm for electrostatic evaluation in Monte Carlo simulations of Coulomb many-body systems.The algorithm is based on a divide-and-conquer strategy and fast update of the octree data structure in each trial move through a local adjustment procedure.We test the accuracy of the tree algorithm,and use it to perform computer simulations of electric double layer near a spherical interface.It is shown that the computational cost of the Monte Carlo method with treecode acceleration scales as log N in each move.For a typical system with ten thousand particles,by using the new algorithm,the speed has been improved by two orders of magnitude from the direct summation.展开更多
The effect of electric charge on the mechanical properties of graphene under tensile loading is investigated by using molecular dynamics method.A modified atomistic moment method based on the classical electrostatics ...The effect of electric charge on the mechanical properties of graphene under tensile loading is investigated by using molecular dynamics method.A modified atomistic moment method based on the classical electrostatics theory is proposed to obtain the distribution of extra charges induced by an external electric field and net electric charges stored in graphene.The electrostatic interactions between charged atoms are calculated using the coulomb law.The results show that the Young's modulus and the critical fracture stress under uniaxial tension decrease with the increase of electric potential and net charges on graphene.The failure of graphene induced by electric charges is found to be controlled by charge level.The results indicate that the carbon-carbon bonds at the edge of graphene will break first.展开更多
基金supported by National Natural Science Foundation of China (Grant Nos.11101276 and 91130012)the support from the Alexander von Humboldt Foundation for a research stay at the Institute of Compututional Physics,University of Stuttgart
文摘Computer simulation with Monte Carlo is an important tool to investigate the function and equilibrium properties of many biological and soft matter materials solvable in solvents.The appropriate treatment of long-range electrostatic interaction is essential for these charged systems,but remains a challenging problem for large-scale simulations.We develop an efficient Barnes-Hut treecode algorithm for electrostatic evaluation in Monte Carlo simulations of Coulomb many-body systems.The algorithm is based on a divide-and-conquer strategy and fast update of the octree data structure in each trial move through a local adjustment procedure.We test the accuracy of the tree algorithm,and use it to perform computer simulations of electric double layer near a spherical interface.It is shown that the computational cost of the Monte Carlo method with treecode acceleration scales as log N in each move.For a typical system with ten thousand particles,by using the new algorithm,the speed has been improved by two orders of magnitude from the direct summation.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11072093 and 11121202)
文摘The effect of electric charge on the mechanical properties of graphene under tensile loading is investigated by using molecular dynamics method.A modified atomistic moment method based on the classical electrostatics theory is proposed to obtain the distribution of extra charges induced by an external electric field and net electric charges stored in graphene.The electrostatic interactions between charged atoms are calculated using the coulomb law.The results show that the Young's modulus and the critical fracture stress under uniaxial tension decrease with the increase of electric potential and net charges on graphene.The failure of graphene induced by electric charges is found to be controlled by charge level.The results indicate that the carbon-carbon bonds at the edge of graphene will break first.