In this study,the characteristics of Electromagnetic(EM) radiation caused by Electrostatic Discharges(ESDs) from metal spheres charged to voltages less than 1 kV are examined experimentally.Our experimental system con...In this study,the characteristics of Electromagnetic(EM) radiation caused by Electrostatic Discharges(ESDs) from metal spheres charged to voltages less than 1 kV are examined experimentally.Our experimental system consists of a pair of spherical electrodes of different diameters,a 1-18 GHz-bandwidth horn antenna and a 20-GHz-bandwidth digitizing oscilloscope.Polarization,waveform duration and peaks of antenna-received voltages from the EM field radiation are measured in order to clarify the EM radiation mechanism.The ratio of the received voltages between the antenna arrangements of the field polarization parallel and perpendicular to the spark pass is 18 to 20 dB.The polarities of the antenna-received voltages are the same as those of the charge voltages across the gap.Moreover,the waveform duration and the first peaks increase with an increase in the diameters of the spherical electrodes.Consequently,we find that the polarization,waveform duration and first peaks of the EM field radiation can be explained by a dipole antenna structure,which makes the spark part of the spherical electrodes a feeding point on the straight line passing through the centres of the two spheres.展开更多
With the development of cloud computing, virtualization technology has been widely used in our life. Meanwhile, it became one of the key targets for some attackers. The integrity measurement in virtual machine has bec...With the development of cloud computing, virtualization technology has been widely used in our life. Meanwhile, it became one of the key targets for some attackers. The integrity measurement in virtual machine has become an urgent problem. Some of the existing virtualization platform integrity measurement mechanism introduces the trusted computing technology, according to a trusted chain that the Trusted Platform Module(TPM) established for trusted root to measure the integrity of process in static. But this single chain static measurement cannot ensure the dynamic credible in platform running. To solve the problem that the virtual trusted platform can not guarantee the dynamic credibility, this paper put forward Dynamic Integrity Measurement Model(DIMM) based on virtual Trusted Platform Module(v TPM) which had been implemented with typical virtual machine monitor Xen as an example. DIMM combined with virtual machine introspection and event capture technology to ensure the security of the entire user domain. Based on the framework, this paper put forward Self-modify dynamic measurement strategy which can effectively reduce the measurement frequency and improve the measurement performance. Finally, it is proved that the validity and feasibility of the proposed model with comparison experiments.展开更多
The structure and working principle of a self-deigned high pressure electronic pneumatic pressure reducing valve (EPPRV) with slide pilot are introduced.The resistance value formulas and the relationship between the r...The structure and working principle of a self-deigned high pressure electronic pneumatic pressure reducing valve (EPPRV) with slide pilot are introduced.The resistance value formulas and the relationship between the resistance and pressure of three typical pneumatic resistances are obtained.Then,the method of static characteristics analysis only considering pneumatic resistances is proposed,the resistance network from gas supply to load is built up,and the mathematical model is derived from the flow rate formulas and flow conservation equations,with the compressibility of high pressure gas and temperature drop during the expansion considered in the model.Finally,the pilot spool displacement of 1.5 mm at an output pressure of 15MPa and the enlarging operating stroke of the pilot spool are taken as optimization targets,and the optimization is carried out based on genetic algorithm and the model mentioned above.The results show that the static characteristics of the EPPRV are significantly improved.The idea of static characteristics analysis and optimization based on pneumatic resistance network is valuable for the design of pneumatic components or system.展开更多
By using the quantum magnetohydrodynamic model, the electrostatic waves in weakly magnetized quantum plasmas are investigated. The electrons are treated as a quantum and magnetized species, while the ions are classica...By using the quantum magnetohydrodynamic model, the electrostatic waves in weakly magnetized quantum plasmas are investigated. The electrons are treated as a quantum and magnetized species, while the ions are classical unmagnetized ones. The general dispersion relations are derived. It is shown that, both the high frequency electron waves (Langmuire wave and upper-hybrid wave) and the low frequency ion acoustic wave can propagate when the plasmas are cold.展开更多
文摘In this study,the characteristics of Electromagnetic(EM) radiation caused by Electrostatic Discharges(ESDs) from metal spheres charged to voltages less than 1 kV are examined experimentally.Our experimental system consists of a pair of spherical electrodes of different diameters,a 1-18 GHz-bandwidth horn antenna and a 20-GHz-bandwidth digitizing oscilloscope.Polarization,waveform duration and peaks of antenna-received voltages from the EM field radiation are measured in order to clarify the EM radiation mechanism.The ratio of the received voltages between the antenna arrangements of the field polarization parallel and perpendicular to the spark pass is 18 to 20 dB.The polarities of the antenna-received voltages are the same as those of the charge voltages across the gap.Moreover,the waveform duration and the first peaks increase with an increase in the diameters of the spherical electrodes.Consequently,we find that the polarization,waveform duration and first peaks of the EM field radiation can be explained by a dipole antenna structure,which makes the spark part of the spherical electrodes a feeding point on the straight line passing through the centres of the two spheres.
基金supported by National Natural Science Foundation of China (61170254,61379116), Hebei Natural Science Foundation Project (F2016201244)Hebei Province Science and Technology Research Project of Higher Education (ZD2016043)Hebei Engineering Technology Research Center for IOT Data Acquisition & Processing, North China Insitute of Science and Technology, Hebei 065201,China
文摘With the development of cloud computing, virtualization technology has been widely used in our life. Meanwhile, it became one of the key targets for some attackers. The integrity measurement in virtual machine has become an urgent problem. Some of the existing virtualization platform integrity measurement mechanism introduces the trusted computing technology, according to a trusted chain that the Trusted Platform Module(TPM) established for trusted root to measure the integrity of process in static. But this single chain static measurement cannot ensure the dynamic credible in platform running. To solve the problem that the virtual trusted platform can not guarantee the dynamic credibility, this paper put forward Dynamic Integrity Measurement Model(DIMM) based on virtual Trusted Platform Module(v TPM) which had been implemented with typical virtual machine monitor Xen as an example. DIMM combined with virtual machine introspection and event capture technology to ensure the security of the entire user domain. Based on the framework, this paper put forward Self-modify dynamic measurement strategy which can effectively reduce the measurement frequency and improve the measurement performance. Finally, it is proved that the validity and feasibility of the proposed model with comparison experiments.
基金Project(50575202) supported by the National Natural Science Foundation of China
文摘The structure and working principle of a self-deigned high pressure electronic pneumatic pressure reducing valve (EPPRV) with slide pilot are introduced.The resistance value formulas and the relationship between the resistance and pressure of three typical pneumatic resistances are obtained.Then,the method of static characteristics analysis only considering pneumatic resistances is proposed,the resistance network from gas supply to load is built up,and the mathematical model is derived from the flow rate formulas and flow conservation equations,with the compressibility of high pressure gas and temperature drop during the expansion considered in the model.Finally,the pilot spool displacement of 1.5 mm at an output pressure of 15MPa and the enlarging operating stroke of the pilot spool are taken as optimization targets,and the optimization is carried out based on genetic algorithm and the model mentioned above.The results show that the static characteristics of the EPPRV are significantly improved.The idea of static characteristics analysis and optimization based on pneumatic resistance network is valuable for the design of pneumatic components or system.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 10905015 and 10747122the Foundation of Anhui Educational Committee under Grant No. 2009SQRZ010
文摘By using the quantum magnetohydrodynamic model, the electrostatic waves in weakly magnetized quantum plasmas are investigated. The electrons are treated as a quantum and magnetized species, while the ions are classical unmagnetized ones. The general dispersion relations are derived. It is shown that, both the high frequency electron waves (Langmuire wave and upper-hybrid wave) and the low frequency ion acoustic wave can propagate when the plasmas are cold.