By using the quantum magnetohydrodynamic model, the electrostatic waves in weakly magnetized quantum plasmas are investigated. The electrons are treated as a quantum and magnetized species, while the ions are classica...By using the quantum magnetohydrodynamic model, the electrostatic waves in weakly magnetized quantum plasmas are investigated. The electrons are treated as a quantum and magnetized species, while the ions are classical unmagnetized ones. The general dispersion relations are derived. It is shown that, both the high frequency electron waves (Langmuire wave and upper-hybrid wave) and the low frequency ion acoustic wave can propagate when the plasmas are cold.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos. 10905015 and 10747122the Foundation of Anhui Educational Committee under Grant No. 2009SQRZ010
文摘By using the quantum magnetohydrodynamic model, the electrostatic waves in weakly magnetized quantum plasmas are investigated. The electrons are treated as a quantum and magnetized species, while the ions are classical unmagnetized ones. The general dispersion relations are derived. It is shown that, both the high frequency electron waves (Langmuire wave and upper-hybrid wave) and the low frequency ion acoustic wave can propagate when the plasmas are cold.