Aim To raise the H-NE math model for designing engine radiators.Methods Thismodel was founded on multi-nonlinear regression technology,and the quadratic equatingmethod was used to smooth original data.Through the sens...Aim To raise the H-NE math model for designing engine radiators.Methods Thismodel was founded on multi-nonlinear regression technology,and the quadratic equatingmethod was used to smooth original data.Through the sensitivity analysis about radiatoroptimization designing,some major restraints were obtained.Results Type 1301C radiator wasoptimizingly renwed by use o this model,and the new radiator is more excellent than theold one in respect of the heat transfer factor and the manufacturing cost.Conclusion Theradiation performance can be improved,the area can be reduced,and the fitting scope can bewidened if this model is used in designing radiators.展开更多
A systematic and generic procedure for the determination of the reasonable finished state of self-anchored suspension bridges is proposed, the realization of which is mainly through adjustment of the hanger tensions. ...A systematic and generic procedure for the determination of the reasonable finished state of self-anchored suspension bridges is proposed, the realization of which is mainly through adjustment of the hanger tensions. The initial hanger tensions are first obtained through an iterative analysis by combining the girder-tower-only finite element(FE) model with the analytical program for shape finding of the spatial cable system. These initial hanger tensions, together with the corresponding cable coordinates and internal forces, are then included into the FE model of the total bridge system, the nonlinear analysis of which involves the optimization technique. Calculations are repeated until the optimization algorithm converges to the most optimal hanger tensions(i.e. the desired reasonable finished bridge state). The "temperature rigid arm" is introduced to offset the unavoidable initial deformations of the girder and tower, which are due to the huge axial forces originated from the main cable. Moreover, by changing the stiffness coefficient K in the girder-tower-only FE model, the stiffness proportion of the main girder, the tower or the cable subsystem in the whole structural system could be adjusted according to the design intentions. The effectiveness of the proposed method is examined and demonstrated by one simple tutorial example and one self-anchored suspension bridge.展开更多
An important research topic for prospecting seismology is to provide a fast accurate velocity model from pre-stack depth migration. Aiming at such a problem, we propose a quadratic precision generalized nonlinear glob...An important research topic for prospecting seismology is to provide a fast accurate velocity model from pre-stack depth migration. Aiming at such a problem, we propose a quadratic precision generalized nonlinear global optimization migration velocity inversion. First we discard the assumption that there is a linear relationship between residual depth and residual velocity and propose a velocity model correction equation with quadratic precision which enables the velocity model from each iteration to approach the real model as quickly as possible. Second, we use a generalized nonlinear inversion to get the global optimal velocity perturbation model to all traces. This method can expedite the convergence speed and also can decrease the probability of falling into a local minimum during inversion. The synthetic data and Mamlousi data examples show that our method has a higher precision and needs only a few iterations and consequently enhances the practicability and accuracy of migration velocity analysis (MVA) in complex areas.展开更多
A grating eddy current displacement sensor(GECDS) can be used in a watertight electronic transducer to realize long range displacement or position measurement with high accuracy in difficult industry conditions.The pa...A grating eddy current displacement sensor(GECDS) can be used in a watertight electronic transducer to realize long range displacement or position measurement with high accuracy in difficult industry conditions.The parameters optimization of the sensor is essential for economic and efficient production.This paper proposes a method to combine an artificial neural network(ANN) and a genetic algorithm(GA) for the sensor parameters optimization.A neural network model is developed to map the complex relationship between design parameters and the nonlinearity error of the GECDS,and then a GA is used in the optimization process to determine the design parameter values,resulting in a desired minimal nonlinearity error of about 0.11%.The calculated nonlinearity error is 0.25%.These results show that the proposed method performs well for the parameters optimization of the GECDS.展开更多
文摘Aim To raise the H-NE math model for designing engine radiators.Methods Thismodel was founded on multi-nonlinear regression technology,and the quadratic equatingmethod was used to smooth original data.Through the sensitivity analysis about radiatoroptimization designing,some major restraints were obtained.Results Type 1301C radiator wasoptimizingly renwed by use o this model,and the new radiator is more excellent than theold one in respect of the heat transfer factor and the manufacturing cost.Conclusion Theradiation performance can be improved,the area can be reduced,and the fitting scope can bewidened if this model is used in designing radiators.
基金Project(20133204120015) supported by Specialized Research Fund for the Doctoral Program of Higher Education of ChinaProject(12KJB560003) supported by the Natural Science Foundation of the Higher Education Institution of Jiangsu Province,China
文摘A systematic and generic procedure for the determination of the reasonable finished state of self-anchored suspension bridges is proposed, the realization of which is mainly through adjustment of the hanger tensions. The initial hanger tensions are first obtained through an iterative analysis by combining the girder-tower-only finite element(FE) model with the analytical program for shape finding of the spatial cable system. These initial hanger tensions, together with the corresponding cable coordinates and internal forces, are then included into the FE model of the total bridge system, the nonlinear analysis of which involves the optimization technique. Calculations are repeated until the optimization algorithm converges to the most optimal hanger tensions(i.e. the desired reasonable finished bridge state). The "temperature rigid arm" is introduced to offset the unavoidable initial deformations of the girder and tower, which are due to the huge axial forces originated from the main cable. Moreover, by changing the stiffness coefficient K in the girder-tower-only FE model, the stiffness proportion of the main girder, the tower or the cable subsystem in the whole structural system could be adjusted according to the design intentions. The effectiveness of the proposed method is examined and demonstrated by one simple tutorial example and one self-anchored suspension bridge.
基金This work is supported by National Natural Science Foundation of China (Grant No.40839905).
文摘An important research topic for prospecting seismology is to provide a fast accurate velocity model from pre-stack depth migration. Aiming at such a problem, we propose a quadratic precision generalized nonlinear global optimization migration velocity inversion. First we discard the assumption that there is a linear relationship between residual depth and residual velocity and propose a velocity model correction equation with quadratic precision which enables the velocity model from each iteration to approach the real model as quickly as possible. Second, we use a generalized nonlinear inversion to get the global optimal velocity perturbation model to all traces. This method can expedite the convergence speed and also can decrease the probability of falling into a local minimum during inversion. The synthetic data and Mamlousi data examples show that our method has a higher precision and needs only a few iterations and consequently enhances the practicability and accuracy of migration velocity analysis (MVA) in complex areas.
文摘A grating eddy current displacement sensor(GECDS) can be used in a watertight electronic transducer to realize long range displacement or position measurement with high accuracy in difficult industry conditions.The parameters optimization of the sensor is essential for economic and efficient production.This paper proposes a method to combine an artificial neural network(ANN) and a genetic algorithm(GA) for the sensor parameters optimization.A neural network model is developed to map the complex relationship between design parameters and the nonlinearity error of the GECDS,and then a GA is used in the optimization process to determine the design parameter values,resulting in a desired minimal nonlinearity error of about 0.11%.The calculated nonlinearity error is 0.25%.These results show that the proposed method performs well for the parameters optimization of the GECDS.