针对在非全互连三维片上网络(3D No C)架构中的硅通孔(TSV)表只存储TSV地址信息,导致网络拥塞的问题,提出了记录表结构。该表不仅可以存储距离路由器最近的4个TSV地址,也可存储相应路由器输入缓存的占用和故障信息。在此基础上,又提出...针对在非全互连三维片上网络(3D No C)架构中的硅通孔(TSV)表只存储TSV地址信息,导致网络拥塞的问题,提出了记录表结构。该表不仅可以存储距离路由器最近的4个TSV地址,也可存储相应路由器输入缓存的占用和故障信息。在此基础上,又提出最短传输路径的自适应单播路由算法。首先,计算当前节点与目的节点的坐标确定数据包的传输方式;其次,检测传输路径是否故障,同时获取端口缓存占用信息;最后,确定最佳的传输端口,传输数据包到邻近路由器。两种网络规模下的实验结果表明,与Elevator-First算法相比,所提算法在平均延时和吞吐率性能指标上有明显的优势,且在网络故障率为50%时,Random和Shuffle流量模型下的丢包率分别为25.5%和29.5%。展开更多
文摘针对在非全互连三维片上网络(3D No C)架构中的硅通孔(TSV)表只存储TSV地址信息,导致网络拥塞的问题,提出了记录表结构。该表不仅可以存储距离路由器最近的4个TSV地址,也可存储相应路由器输入缓存的占用和故障信息。在此基础上,又提出最短传输路径的自适应单播路由算法。首先,计算当前节点与目的节点的坐标确定数据包的传输方式;其次,检测传输路径是否故障,同时获取端口缓存占用信息;最后,确定最佳的传输端口,传输数据包到邻近路由器。两种网络规模下的实验结果表明,与Elevator-First算法相比,所提算法在平均延时和吞吐率性能指标上有明显的优势,且在网络故障率为50%时,Random和Shuffle流量模型下的丢包率分别为25.5%和29.5%。