Based on the queuing theory, a nonlinear optimization model is proposed in this paper. A novel transformation of optimization variables is devised and the constraints are properly combined so as to make this model int...Based on the queuing theory, a nonlinear optimization model is proposed in this paper. A novel transformation of optimization variables is devised and the constraints are properly combined so as to make this model into a convex one, from which the Lagrangian function and the KKT conditions are derived. The interiorpoint method for convex optimization is presented here as a computationally efficient tool. Finally, this model is evaluated on a real example, from which such conclusions are drawn that the optimum result can ensure the full utilization of machines and the least amount of WIP in manufacturing systems; the interior-point method for convex optimization needs fewer iterations with significant computational savings. It appears that many non-linear ootimization oroblems in the industrial engineering field would be amenable to this method of solution.展开更多
The multi-source and single-sink(MSSS) topology in wireless sensor networks(WSNs) is defined as a network topology,where all of nodes can gather,receive and transmit data to the sink.In energy-constrained WSNs with su...The multi-source and single-sink(MSSS) topology in wireless sensor networks(WSNs) is defined as a network topology,where all of nodes can gather,receive and transmit data to the sink.In energy-constrained WSNs with such a topology,the joint optimal design in the physical,medium access control(MAC) and network layers is considered for network lifetime maximization(NLM).The problem of integrating multi-layer information to compute NLM,which involves routing flow,link schedule and transmission power,is formulated as a nonlinear optimization problem.Specially under time division multiple access(TDMA) scheme,this problem can be transformed into a convex optimization problem.To solve it analytically we make use of the property that local optimization is global optimization in convex problem.This allows us to exploit the Karush-Kuhn-Tucker (KKT) optimality conditions to solve it and obtain analytical solution expression,i.e.,the globally optimal network lifetime(NL).NL is derived as a function of number of nodes,their initial energy and data rate arrived at them. Based on the analysis of analytical approach,it takes the influence of data rates,link access and routing method over NLM into account.Moreover,the globally optimal transmission schemes are achieved by solution set during analytical approach and applied to algorithms in TDMA-based WSNs aiming at NLM on OMNeT++ to compare with other suboptimal schemes.展开更多
文摘Based on the queuing theory, a nonlinear optimization model is proposed in this paper. A novel transformation of optimization variables is devised and the constraints are properly combined so as to make this model into a convex one, from which the Lagrangian function and the KKT conditions are derived. The interiorpoint method for convex optimization is presented here as a computationally efficient tool. Finally, this model is evaluated on a real example, from which such conclusions are drawn that the optimum result can ensure the full utilization of machines and the least amount of WIP in manufacturing systems; the interior-point method for convex optimization needs fewer iterations with significant computational savings. It appears that many non-linear ootimization oroblems in the industrial engineering field would be amenable to this method of solution.
文摘The multi-source and single-sink(MSSS) topology in wireless sensor networks(WSNs) is defined as a network topology,where all of nodes can gather,receive and transmit data to the sink.In energy-constrained WSNs with such a topology,the joint optimal design in the physical,medium access control(MAC) and network layers is considered for network lifetime maximization(NLM).The problem of integrating multi-layer information to compute NLM,which involves routing flow,link schedule and transmission power,is formulated as a nonlinear optimization problem.Specially under time division multiple access(TDMA) scheme,this problem can be transformed into a convex optimization problem.To solve it analytically we make use of the property that local optimization is global optimization in convex problem.This allows us to exploit the Karush-Kuhn-Tucker (KKT) optimality conditions to solve it and obtain analytical solution expression,i.e.,the globally optimal network lifetime(NL).NL is derived as a function of number of nodes,their initial energy and data rate arrived at them. Based on the analysis of analytical approach,it takes the influence of data rates,link access and routing method over NLM into account.Moreover,the globally optimal transmission schemes are achieved by solution set during analytical approach and applied to algorithms in TDMA-based WSNs aiming at NLM on OMNeT++ to compare with other suboptimal schemes.