期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
大尺度风电消纳下电力系统发电机组两阶段鲁棒优化运行
1
作者 杨莹 孙建宇 +2 位作者 董凤麟 曹美萱 李爱辉 《黑龙江电力》 CAS 2022年第2期127-133,141,共8页
为了实现可再生能源应并尽并、能发多发目标要求,解决风电大尺度消纳时网侧火力机组存在的安全运行隐患和使用寿命损耗问题,提出一种发电机组总体运行经济、安全的三层两阶段鲁棒优化模型。外层模型解决了发电机组的安全启停问题,中间... 为了实现可再生能源应并尽并、能发多发目标要求,解决风电大尺度消纳时网侧火力机组存在的安全运行隐患和使用寿命损耗问题,提出一种发电机组总体运行经济、安全的三层两阶段鲁棒优化模型。外层模型解决了发电机组的安全启停问题,中间层解决风电发电预测不确定性影响,内层解决电力系统安全容量问题。利用嵌套列约束生成算法(nested column and constraint generation,NC&CG)以及KKT条件(Karush Kuhn Tucker Conditions)对所建非凸性模型进行寻优。在改进的IEEE6节点系统上进行仿真测试,结果验证了模型的有效性。 展开更多
关键词 风电消纳 非凸性模型 NC&CG KKT条件
下载PDF
Non-deterministic fatigue life analysis using convex set models 被引量:5
2
作者 SUN WenCai YANG ZiChun LI KunFeng 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2013年第4期765-774,共10页
The non-probabilistic approach to fatigue life analysis was studied using the convex models-interval, ellipsoidal and multiconvex models. The lower and upper bounds of the fatigue life were obtained by using the secon... The non-probabilistic approach to fatigue life analysis was studied using the convex models-interval, ellipsoidal and multiconvex models. The lower and upper bounds of the fatigue life were obtained by using the second-order Taylor series and Lagrange multiplier method. The solving process for derivatives of the implicit life function was presented. Moreover, a median ellipsoidal model was proposed which can take into account the sample blind zone and almost impossibility of concurrence of some small probability events. The Monte Carlo method for multi-convex model was presented, an important alternative when the analytical method does not work. A project example was given. The feasibility and rationality of the presented approach were verified. It is also revealed that the proposed method is conservative compared to the traditional probabilistic method, but it is a useful complement when it is difficult to obtain the accurate probability densities of parameters. 展开更多
关键词 non-deterministic fatigue life convex set model NON-PROBABILISTIC Taylor expansion Monte Carlo
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部