期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
LMD与非凸罚最小化L_q正则子压缩传感的轴承振动信号重建 被引量:1
1
作者 李庆 宋万清 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第10期3696-3702,共7页
针对机械振动信号高速传输、大容量长期实时存储问题,提出一种局部均值分解(LMD)与非凸罚最小化Lq正则子压缩传感(CS)相结合的轴承故障振动信号重建方法。该方法利用振动系统信号采样、压缩合并进行的思想,首先通过LMD把振动信号分解为... 针对机械振动信号高速传输、大容量长期实时存储问题,提出一种局部均值分解(LMD)与非凸罚最小化Lq正则子压缩传感(CS)相结合的轴承故障振动信号重建方法。该方法利用振动系统信号采样、压缩合并进行的思想,首先通过LMD把振动信号分解为若干个不同频率分量的乘积函数平稳信号,对不同的频段分量寻求最佳的稀疏基,构建基于随机高斯矩阵的高度欠定方程;然后求解合适的压缩比,应用非凸罚最小化Lq正则子(q=0.5)算法重构,对所有重构信号组合得到原始振动信号。研究结果表明:LMD与非凸罚最小化Lq正则子压缩传感相结合的方法提高了轴承振动信号的重构精度,降低了重构计算复杂度,具有更高的处理速度和运行效率。 展开更多
关键词 局部均值分解 非凸罚最小化Lq 压缩传感 振动信号 信号重建
下载PDF
基于一种非凸罚函数的稀疏主成分分析方法
2
作者 余嘉月 张倩 李海洋 《河南科学》 2019年第9期1385-1389,共5页
稀疏主成分分析方法剔除了与主成分关系不密切的原始变量,保留了与主成分关系密切的原始变量,克服了经典主成分分析方法的不足.在稀疏主成分分析的基础上,用一种收缩算子所对应的非凸罚函数替代稀疏主成分分析中的L1罚,提出了基于非凸... 稀疏主成分分析方法剔除了与主成分关系不密切的原始变量,保留了与主成分关系密切的原始变量,克服了经典主成分分析方法的不足.在稀疏主成分分析的基础上,用一种收缩算子所对应的非凸罚函数替代稀疏主成分分析中的L1罚,提出了基于非凸罚函数的稀疏主成分分析方法,并给出了阈值迭代算法.结果表明,该方法相对于稀疏主成分分析方法,不仅提高了总方差贡献率,而且增加了主成分载荷的稀疏度,即更加凸显主成分与某些原始变量的关系. 展开更多
关键词 稀疏主成分分析 阈值迭代算法 非凸罚函数 稀疏信息处理 收缩算子 临近算子
下载PDF
非凸罚正则化稀疏低秩矩阵的大型减速机圆锥滚子轴承微弱故障诊断 被引量:2
3
作者 李庆 LIANG STEVENY 《机械工程学报》 EI CAS CSCD 北大核心 2018年第23期102-111,共10页
在强烈外界噪声下或轴承故障早期发展阶段,从轴承非平稳故障信号中提取微弱冲击成分是一个难点,针对这一问题,提出了一种新的基于非凸罚正则化稀疏低秩矩阵(Non-convex penalty regularization sparse low-rank matrix,NPRSLM)的轴承微... 在强烈外界噪声下或轴承故障早期发展阶段,从轴承非平稳故障信号中提取微弱冲击成分是一个难点,针对这一问题,提出了一种新的基于非凸罚正则化稀疏低秩矩阵(Non-convex penalty regularization sparse low-rank matrix,NPRSLM)的轴承微弱故障特征提取方法。该方法不依赖振动信号结构的先验知识,也无需采集大量的样本信号来训练字典,避免了传统稀疏表示设计冗余字典带来的缺乏物理意义,通用性差等缺陷。该方法的核心思想是把采集的振动信号与待提取的故障脉冲看作一维矩阵(向量),通过求解稀疏正则化的反问题得到故障脉冲信号。在建模上,通过引入非凸罚函数代替了传统最小化L1-norm融合套索算法,建立非凸罚正则化稀疏低秩矩阵模型,理论推导了所建立模型的严格凸性,并利用交替方向乘子法(Alternating direction method of multipliers,ADMM)对模型进行求解,同时讨论了模型参数对模型算法的收敛性问题、凸性与非凸性边界取值问题等。仿真算例与大型减速机圆锥滚子轴承诊断实例表明:该方法不仅能提取隐藏在强烈外界噪声中的微弱冲击特征,而且改善了传统最小化L1-norm融合套索算法在提取微弱故障冲击时产生的脉冲能量大幅衰减与脉冲数目丢失问题。 展开更多
关键词 非凸罚正则化 稀疏低秩矩阵 交替方向乘子法 微弱故障 圆锥滚子轴承
原文传递
一种统一的非凸稀疏恢复的原始对偶有效集算法 被引量:1
4
作者 焦雨领 刘宇青 《数学建模及其应用》 2020年第4期1-27,F0003,共28页
研究了基于最小二乘法的稀疏信号恢复问题.针对一类非凸稀疏性罚,包括l^0、bridge、capped-l^1、光滑剪切绝对差和极小极大凹罚,提出了一种新的原始对偶有效集算法.首先证明相关优化问题的全局极小值的存在性,然后利用相关阈值算子,推... 研究了基于最小二乘法的稀疏信号恢复问题.针对一类非凸稀疏性罚,包括l^0、bridge、capped-l^1、光滑剪切绝对差和极小极大凹罚,提出了一种新的原始对偶有效集算法.首先证明相关优化问题的全局极小值的存在性,然后利用相关阈值算子,推导出全局极小值的一个新的必要最优条件,必要最优条件的解是坐标极小值,在一定条件下,它们也是局部的极小值.引入对偶变量后,可同时使用原变量和对偶变量确定有效集.此外,这种关系适用于一种有效集类迭代算法,该算法在每一步中首先只更新有效集上的原始变量,然后显式地更新对偶变量.结合正则化参数的延拓性,证明了原始对偶有效集方法在一定正则化条件下全局收敛于潜在回归目标.大量的数值实验表明,与现有的稀疏恢复方法相比,该方法具有较高的效率和精度. 展开更多
关键词 非凸罚 稀疏性 原始对偶有效集算法 延续性 一致性
下载PDF
部分线性空间自回归模型的惩罚最小二乘方法
5
作者 程瑶瑶 李体政 《工程数学学报》 CSCD 北大核心 2024年第2期294-310,共17页
部分线性空间自回归模型因具有参数空间自回归模型的解释能力和非参数空间自回归模型的灵活性而成为一类备受关注的半参数空间自回归模型。主要研究部分线性空间自回归模型的变量选择问题,基于轮廓拟最大似然方法和一类非凸罚函数,提出... 部分线性空间自回归模型因具有参数空间自回归模型的解释能力和非参数空间自回归模型的灵活性而成为一类备受关注的半参数空间自回归模型。主要研究部分线性空间自回归模型的变量选择问题,基于轮廓拟最大似然方法和一类非凸罚函数,提出了一类惩罚最小二乘方法同时选择该模型的参数部分中重要解释变量和估计相应的非零回归系数。在适当的正则条件下,推导了回归系数的惩罚估计的收敛速度,并证明了所提出的变量选择方法具有Oracle性质。模拟研究和实际数据分析均表明所提出的变量选择方法具有满意的有限样本性质。 展开更多
关键词 空间相关 部分线性空间自回归模型 轮廓拟最大似然方法 非凸罚函数
下载PDF
基于增广Huber正则化稀疏低秩矩阵的旋转机械微弱故障诊断 被引量:5
6
作者 李庆 胡炜 +1 位作者 彭二飞 LIANG Steven Y 《中国电机工程学报》 EI CSCD 北大核心 2019年第15期4579-4588,共10页
在多重故障相互耦合和强烈背景噪声下,提取大型旋转机械中的复合微弱故障特征是一个难点,针对这一问题,提出一种新的基于增广Huber正则化稀疏低秩矩阵(augmented Huber regularized sparse low-rank-matrix,AHR-SLM)的旋转机械故障特征... 在多重故障相互耦合和强烈背景噪声下,提取大型旋转机械中的复合微弱故障特征是一个难点,针对这一问题,提出一种新的基于增广Huber正则化稀疏低秩矩阵(augmented Huber regularized sparse low-rank-matrix,AHR-SLM)的旋转机械故障特征提取方法,以大型减速机齿轮箱复合微弱诊断为例。该方法借助于非凸罚正则化稀疏低秩矩阵的思想,通过引入增广Huber罚函数代替传统最小化L1-norm融合套索算法,建立正则化目标成本函数,推导所建立模型的严格凸性,同时讨论模型严格凸性前提下的模型参数最优取值问题,并利用前向–后向算法对所建立模型进行求解。仿真算例与大型减速机齿轮箱微弱故障诊断实例表明:该方法不仅能提取隐藏在强烈外界噪声中的复合微弱故障特征,而且改善传统最小化L1-norm融合套索算法在提取微弱故障冲击时产生的稀疏系数低估与故障频率丢失问题,以及变分模态分解与快速谱峭度图特征提取算法产生的能量衰减与故障频率丢失问题。 展开更多
关键词 复合微弱故障 增广Huber函数 非凸罚正则化 稀疏低秩矩阵 齿轮箱
下载PDF
组稀疏低秩矩阵估计的变转速滚动轴承故障特征提取
7
作者 王冉 张军武 余亮 《振动与冲击》 EI CSCD 北大核心 2023年第16期92-100,119,共10页
早期轴承故障特征的有效提取对于避免严重机械事故具有重要的意义。表征轴承故障的脉冲信号往往淹没在强背景噪声干扰中,并且轴承常常在变转速工况下运行,这使故障特征的提取较为困难。针对这一问题,提出一种用于变转速工况下滚动轴承... 早期轴承故障特征的有效提取对于避免严重机械事故具有重要的意义。表征轴承故障的脉冲信号往往淹没在强背景噪声干扰中,并且轴承常常在变转速工况下运行,这使故障特征的提取较为困难。针对这一问题,提出一种用于变转速工况下滚动轴承故障特征提取的组稀疏低秩矩阵估计算法。首先,根据变转速工况下轴承故障脉冲信号的角度时间循环平稳特性,利用阶频谱相关(order-frequency spectral correlation, OFSC)将测量信号转换至阶频域中;其次,揭示了轴承故障脉冲在阶频域中的组稀疏性和低秩性,并据此构建一种凸优化问题来增强这两种特性,引入非凸罚函数来提高故障特征的稀疏性;再次,在交替方向乘子法(alternating direction method of multipliers, ADMM)和优化最小化(majorization-minimization, MM)框架下求解该凸优化问题,推导出组稀疏低秩(group sparse low-rank, GSLR)矩阵估计算法;最后,通过构建增强包络阶次谱(enhanced envelope order spectrum, EEOS)对求解得到的目标分量进行故障特征检测。仿真和试验信号的分析验证了该方法在故障特征提取中的有效性。 展开更多
关键词 变转速工况 组稀疏低秩(GSLR) 非凸罚函数 增强包络阶次谱(EEOS) 特征提取
下载PDF
基于稀疏表示的轨道波磨检测方法研究
8
作者 俞晓媛 《建模与仿真》 2024年第1期888-901,共14页
波磨是轨道交通运行过程中常见的问题之一,为了检测钢轨波磨,不同于传统波磨检测方法,在MATLAB环境下处理车辆轴箱振动信号得到钢轨波磨波形。进行动力学建模,建立列车集总参数简化模型推导波磨状态下的列车振动信号。采用信号稀疏表示... 波磨是轨道交通运行过程中常见的问题之一,为了检测钢轨波磨,不同于传统波磨检测方法,在MATLAB环境下处理车辆轴箱振动信号得到钢轨波磨波形。进行动力学建模,建立列车集总参数简化模型推导波磨状态下的列车振动信号。采用信号稀疏表示方法对轻微故障特征进行提取与诊断,其中L1范数作为正则化的方法是目前最常用的,但基于该方法容易低估重构信号幅值,可能会造成较大误差,因此采用基于GMC罚函数的稀疏表示方法解决此问题。建立目标函数,研究目标函数的保凸条件,利用前向后向分裂算法(FBS)求解稀疏表示目标函数,对比两种方法在重构信号方面的表现。结果显示,GMC罚函数在信号重构方面的性能更好,优于L1罚函数。接着基于GMC罚函数的稀疏表示方法进行仿真和实测,验证所提方法的有效性,并针对不足之处加以分析。 展开更多
关键词 波磨检测 故障诊断 稀疏表示 非凸罚函数
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部