氧化钒(VOx)作为热敏材料已经广泛应用在非制冷红外探测器中,其中热敏材料的性能对于最终器件性能的影响尤为关键。为了研究钨元素摻杂对氧化钒热敏薄膜材料的相变温度、热滞宽度、低温时的电阻温度系数的影响以及对探测器性能指标的影...氧化钒(VOx)作为热敏材料已经广泛应用在非制冷红外探测器中,其中热敏材料的性能对于最终器件性能的影响尤为关键。为了研究钨元素摻杂对氧化钒热敏薄膜材料的相变温度、热滞宽度、低温时的电阻温度系数的影响以及对探测器性能指标的影响,利用微电子加工工艺制备了钨摻杂与非钨摻杂氧化钒溅射薄膜红外探测器件,并利用黑体测试系统结合锁相放大器和频谱分析仪对器件性能指标进行了测试。结果表明,相比非钨掺杂器件,钨掺杂器件的相变温度降低了16℃左右,热滞宽度缩短了5℃左右,器件的响应电压则提高了0.15 m V,单位带宽噪声均方根电压降低了15 n V·Hz-1/2,从而使器件探测率提高。当辐射信号的调制频率为80 Hz时,非钨掺杂氧化钒探测器的探测率D*值为1.67×108cm·Hz1/2/W,而钨掺杂氧化钒探测器的探测率D*值为1.85×108cm·Hz1/2/W。可见,钨掺杂氧化钒探测器的探测率较非钨掺杂氧化钒探测器的探测率高。展开更多
文摘氧化钒(VOx)作为热敏材料已经广泛应用在非制冷红外探测器中,其中热敏材料的性能对于最终器件性能的影响尤为关键。为了研究钨元素摻杂对氧化钒热敏薄膜材料的相变温度、热滞宽度、低温时的电阻温度系数的影响以及对探测器性能指标的影响,利用微电子加工工艺制备了钨摻杂与非钨摻杂氧化钒溅射薄膜红外探测器件,并利用黑体测试系统结合锁相放大器和频谱分析仪对器件性能指标进行了测试。结果表明,相比非钨掺杂器件,钨掺杂器件的相变温度降低了16℃左右,热滞宽度缩短了5℃左右,器件的响应电压则提高了0.15 m V,单位带宽噪声均方根电压降低了15 n V·Hz-1/2,从而使器件探测率提高。当辐射信号的调制频率为80 Hz时,非钨掺杂氧化钒探测器的探测率D*值为1.67×108cm·Hz1/2/W,而钨掺杂氧化钒探测器的探测率D*值为1.85×108cm·Hz1/2/W。可见,钨掺杂氧化钒探测器的探测率较非钨掺杂氧化钒探测器的探测率高。