期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
一类Euler方程的非平凡解的存在性
1
作者 姚仰新 许金泉 《华南理工大学学报(自然科学版)》 EI CAS CSCD 1994年第1期133-140,共8页
本文应用山路引理讨论下面的Euler方程的超临界增长的边值问题的非平凡解的存在性.其中n(x)是Ω的外法向,C为常数.
关键词 超临界 欧拉方程 存在性 非单凡解
下载PDF
The Osgood Integral or the Cauchy-Osgood Integral?
2
作者 CHERIET Djamel Eddine BEBBOUCHI Rachid 《Journal of Mathematics and System Science》 2014年第3期155-157,共3页
Initially, Osgood used the integral ∫dr/f(r)for an unicity crite, rion to the differential equation y' = f(y), f (0) = 0. The trivial solution is unique iff this integral goes to the infinite at the origin. Th... Initially, Osgood used the integral ∫dr/f(r)for an unicity crite, rion to the differential equation y' = f(y), f (0) = 0. The trivial solution is unique iff this integral goes to the infinite at the origin. Then he can prove the unicity of the trivial solution of y' = y Ln|Y|, although the second member is not lipschitzian. Later, Bernfeld [1] shows that all the solutions of y' = f(y) do not explose iffthe same integral goes to the infinite at the infinite. Finally, we can adapt a result from the Cauchy works as follows: the trivial solution is a singular solution iffthe same integral vanishes at the origin. Using non standard analysis, we present the proofs of the different criterions and show that the Osgood integral was used by Cauchy before in the similar purpose. 展开更多
关键词 Ordinary differential equations unicity explosion of a solution singular solution.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部