By using the perturbation theories on sums of ranges of nonlinear accretive mappings of Calvert and Gupta, we study the abstract results on the existence of a solution u ∈ L^s (Ω) of nonlinear boundary value probl...By using the perturbation theories on sums of ranges of nonlinear accretive mappings of Calvert and Gupta, we study the abstract results on the existence of a solution u ∈ L^s (Ω) of nonlinear boundary value problems involving the p-Laplacian operator, where 2≤ s〈+∞, and 2N/N+1 〈 p ≤ 2 for N(≥ 1) which denotes the dimension of R^N. To obtain the result, some new techniques are used in this paper. The equation discussed in this paper and our methods here are extension and complement to the corresponding results of L. Wei and Z. He.展开更多
In this paper, two iterative schemes for approximating common element of the set of zero points of maximal monotone operators and the set of fixed points of a kind of generalized nonexpansive mappings in a real unifor...In this paper, two iterative schemes for approximating common element of the set of zero points of maximal monotone operators and the set of fixed points of a kind of generalized nonexpansive mappings in a real uniformly smooth and uniformly convex Banach space are proposed. Two strong convergence theorems are obtained and their applications on finding the minimizer of a kind of convex functional are discussed, which extend some previous work.展开更多
This paper introduces a three-step iteration for finding a common element of the set of fixedpoints of a nonexpansive mapping and the set of solutions of the variational inequality for an inverse-strongly monotone map...This paper introduces a three-step iteration for finding a common element of the set of fixedpoints of a nonexpansive mapping and the set of solutions of the variational inequality for an inverse-strongly monotone mapping by viscosity approximation methods in a Hilbert space.The authors showthat the iterative sequence converges strongly to a common element of the two sets,which solves somevariational inequality.Subsequently,the authors consider the problem of finding a common fixed pointof a nonexpansive mapping and a strictly pseudo-contractive mapping and the problem of finding acommon element of the set of fixed points of a nonexpansive mapping and the set of zeros of an inverse-strongly monotone mapping.The results obtained in this paper extend and improve the correspondingresults announced by Nakajo,Takahashi,and Toyoda.展开更多
基金This research is supported by the National Natural Science Foundation of China(No. 10471033).
文摘By using the perturbation theories on sums of ranges of nonlinear accretive mappings of Calvert and Gupta, we study the abstract results on the existence of a solution u ∈ L^s (Ω) of nonlinear boundary value problems involving the p-Laplacian operator, where 2≤ s〈+∞, and 2N/N+1 〈 p ≤ 2 for N(≥ 1) which denotes the dimension of R^N. To obtain the result, some new techniques are used in this paper. The equation discussed in this paper and our methods here are extension and complement to the corresponding results of L. Wei and Z. He.
基金the National Natural Science Foundation of China (No. 10771050).
文摘In this paper, two iterative schemes for approximating common element of the set of zero points of maximal monotone operators and the set of fixed points of a kind of generalized nonexpansive mappings in a real uniformly smooth and uniformly convex Banach space are proposed. Two strong convergence theorems are obtained and their applications on finding the minimizer of a kind of convex functional are discussed, which extend some previous work.
基金supported by the National Natural Science Foundation of China under Grant No. 10771050
文摘This paper introduces a three-step iteration for finding a common element of the set of fixedpoints of a nonexpansive mapping and the set of solutions of the variational inequality for an inverse-strongly monotone mapping by viscosity approximation methods in a Hilbert space.The authors showthat the iterative sequence converges strongly to a common element of the two sets,which solves somevariational inequality.Subsequently,the authors consider the problem of finding a common fixed pointof a nonexpansive mapping and a strictly pseudo-contractive mapping and the problem of finding acommon element of the set of fixed points of a nonexpansive mapping and the set of zeros of an inverse-strongly monotone mapping.The results obtained in this paper extend and improve the correspondingresults announced by Nakajo,Takahashi,and Toyoda.