A class of triangular non li near system with disturbances which has unknown multiplicative time varying par ametric uncertainties in each virtual control is treated by a backstepping techn ique. The controller desig...A class of triangular non li near system with disturbances which has unknown multiplicative time varying par ametric uncertainties in each virtual control is treated by a backstepping techn ique. The controller designed for all admissible uncertainties can guarantee tha t all states of its closed loop system are uniformly bounded. The robust contro ller design algorithm and a sufficient condition of the system stability are giv en. In addition, the closed loop system has an ISS property when the multiplica tive time varying parametric uncertainties are viewed as inputs to the system. Thus, this design provides a way to prevent a destabilizing effect of the multip licative time varying parametric uncertainties. Finally, simulational example i s given and simulational result shows that the controller exhibits effectiveness and excellent robustness.展开更多
This paper presents a sliding mode (SM) based identifier to deal with the parameter identification problem for a class of parameter uncertain nonlinear dynamic systems with input nonlinearity. A sliding mode controlle...This paper presents a sliding mode (SM) based identifier to deal with the parameter identification problem for a class of parameter uncertain nonlinear dynamic systems with input nonlinearity. A sliding mode controller (SMC) is used to ensure the global reaching condition of the sliding mode for the nonlinear system; an identifier is designed to identify the uncertain parameter of the nonlinear system. A numerical example is studied to show the feasibility of the SM controller and the asymptotical convergence of the identifier.展开更多
文摘A class of triangular non li near system with disturbances which has unknown multiplicative time varying par ametric uncertainties in each virtual control is treated by a backstepping techn ique. The controller designed for all admissible uncertainties can guarantee tha t all states of its closed loop system are uniformly bounded. The robust contro ller design algorithm and a sufficient condition of the system stability are giv en. In addition, the closed loop system has an ISS property when the multiplica tive time varying parametric uncertainties are viewed as inputs to the system. Thus, this design provides a way to prevent a destabilizing effect of the multip licative time varying parametric uncertainties. Finally, simulational example i s given and simulational result shows that the controller exhibits effectiveness and excellent robustness.
文摘This paper presents a sliding mode (SM) based identifier to deal with the parameter identification problem for a class of parameter uncertain nonlinear dynamic systems with input nonlinearity. A sliding mode controller (SMC) is used to ensure the global reaching condition of the sliding mode for the nonlinear system; an identifier is designed to identify the uncertain parameter of the nonlinear system. A numerical example is studied to show the feasibility of the SM controller and the asymptotical convergence of the identifier.