期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
非参数分位数估计在我国非寿险公司偿付能力额度计算中的应用
1
作者 王志刚 陈志芳 《经济论坛》 2012年第12期64-68,共5页
本文对保险公司偿付能力常用估计方法——比率法做了改进,比较了三种不同分位数估计方法的稳健性,使用稳健的非参数分位数估计方法对比率法中的赔付率做了分位数估计,并将这个估计结果代入含投资收益的比率法模型中,对我国非寿险公司偿... 本文对保险公司偿付能力常用估计方法——比率法做了改进,比较了三种不同分位数估计方法的稳健性,使用稳健的非参数分位数估计方法对比率法中的赔付率做了分位数估计,并将这个估计结果代入含投资收益的比率法模型中,对我国非寿险公司偿付能力额度进行了短期预测。 展开更多
关键词 非参数分位数估计 偿付能力 比率法
下载PDF
Quantile residual lifetime for left-truncated and right-censored data 被引量:8
2
作者 WANG YiXin LIU Peng ZHOU Yong 《Science China Mathematics》 SCIE CSCD 2015年第6期1217-1234,共18页
This article proposes a simple nonparametric estimator of quantile residual lifetime function under left-truncated and right-censored data. The asymptotic consistency and normality of this estimator are proved and the... This article proposes a simple nonparametric estimator of quantile residual lifetime function under left-truncated and right-censored data. The asymptotic consistency and normality of this estimator are proved and the variance expression is calculated. Two bootstrap procedures are employed in the simulation study,where the latter bootstrap from Zeng and Lin(2008) is 4000 times faster than the former naive one, and the numerical results in both methods show that our estimating approach works well. A real data example is used to illustrate its application. 展开更多
关键词 truncated lifetime estimator consistency latter faster nonparametric naive bootstrap estimating
原文传递
Nonparametric estimation of quantiles for a class of stationary processes
3
作者 HUANG Chu WANG HanChao LIN ZhengYan 《Science China Mathematics》 SCIE CSCD 2015年第12期2621-2632,共12页
We study smoothed quantile estimator for a class of stationary processes. We obtain the convergency rates and the Bahadur representation, as well as the asymptotic normality for this estimator by the method of m-depen... We study smoothed quantile estimator for a class of stationary processes. We obtain the convergency rates and the Bahadur representation, as well as the asymptotic normality for this estimator by the method of m-dependent approximation. Our results can be used in the study of the estimation of value-at-risk(Va R) and applied to many time series which have important applications in econometrics. 展开更多
关键词 quantile estimator kernel method causal process m-dependent approximation asymptotic inference
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部