This article proposes a simple nonparametric estimator of quantile residual lifetime function under left-truncated and right-censored data. The asymptotic consistency and normality of this estimator are proved and the...This article proposes a simple nonparametric estimator of quantile residual lifetime function under left-truncated and right-censored data. The asymptotic consistency and normality of this estimator are proved and the variance expression is calculated. Two bootstrap procedures are employed in the simulation study,where the latter bootstrap from Zeng and Lin(2008) is 4000 times faster than the former naive one, and the numerical results in both methods show that our estimating approach works well. A real data example is used to illustrate its application.展开更多
We study smoothed quantile estimator for a class of stationary processes. We obtain the convergency rates and the Bahadur representation, as well as the asymptotic normality for this estimator by the method of m-depen...We study smoothed quantile estimator for a class of stationary processes. We obtain the convergency rates and the Bahadur representation, as well as the asymptotic normality for this estimator by the method of m-dependent approximation. Our results can be used in the study of the estimation of value-at-risk(Va R) and applied to many time series which have important applications in econometrics.展开更多
基金supported by National Natural Science Foundation of China(Grant No.71271128)the State Key Program of National Natural Science Foundation of China(Grant No.71331006)+2 种基金NCMIS and Shanghai University of Finance and Economics through Project 211 Phase IVShanghai Firstclass Discipline A,Outstanding Ph D Dissertation Cultivation Funds of Shanghai University of Finance and EconomicsGraduate Education Innovation Funds of Shanghai University of Finance and Economics(Grant No.CXJJ-2011-438)
文摘This article proposes a simple nonparametric estimator of quantile residual lifetime function under left-truncated and right-censored data. The asymptotic consistency and normality of this estimator are proved and the variance expression is calculated. Two bootstrap procedures are employed in the simulation study,where the latter bootstrap from Zeng and Lin(2008) is 4000 times faster than the former naive one, and the numerical results in both methods show that our estimating approach works well. A real data example is used to illustrate its application.
文摘We study smoothed quantile estimator for a class of stationary processes. We obtain the convergency rates and the Bahadur representation, as well as the asymptotic normality for this estimator by the method of m-dependent approximation. Our results can be used in the study of the estimation of value-at-risk(Va R) and applied to many time series which have important applications in econometrics.