期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
高速公路短时交通流量预测的改进非参数回归算法 被引量:4
1
作者 孙棣华 李超 廖孝勇 《公路交通科技》 CAS CSCD 北大核心 2013年第11期112-118,共7页
针对非参数回归短时交通流量预测算法的状态向量选取问题,基于高速公路交通流量在空间上演变趋势明显的特点,提出交通流量预测的改进非参数回归算法。引入各上游断面车流到达当前断面的行程时间作为状态向量选取的依据,并根据各上游断... 针对非参数回归短时交通流量预测算法的状态向量选取问题,基于高速公路交通流量在空间上演变趋势明显的特点,提出交通流量预测的改进非参数回归算法。引入各上游断面车流到达当前断面的行程时间作为状态向量选取的依据,并根据各上游断面影响程度的不同,调整相似机制的计算方法。利用渝武高速公路微波检测器数据对该模型进行验证。结果表明,改进的非参数回归算法克服了固定状态向量定义不能满足同一断面不同交通状态的缺点,对各种交通状态具有更好的适应性,预测精度更高。 展开更多
关键词 交通工程 短时交通流量预测 非参数回归算法 状态向量 行程时间 相似机制
下载PDF
基于数据约减和支持向量机的非参数回归短时交通流预测算法 被引量:17
2
作者 吴晋武 张海峰 冉旭东 《公路交通科技》 CAS CSCD 北大核心 2020年第7期129-134,共6页
交通流短时预测对保障智能交通系统的快速运行具有至关重要的作用。准确高效的交通流短时预测不仅可给交通流管理者提供辅助决策支持,同时可提高驾驶人员的出行效率,躲避或减缓交通拥堵。利用传统的非参数回归方法短时预测交通流在数据... 交通流短时预测对保障智能交通系统的快速运行具有至关重要的作用。准确高效的交通流短时预测不仅可给交通流管理者提供辅助决策支持,同时可提高驾驶人员的出行效率,躲避或减缓交通拥堵。利用传统的非参数回归方法短时预测交通流在数据体量大、维度较高时,存在模式库需要的存储空间大、查询速度慢等缺点。针对这一问题,提出了一种改进的非参数回归交通流预测算法,不仅可提高算法的运算效率,同时可提升算法的预测精度。首先,使用主成分分析方法对模式维度进行了降维处理,以克服维度过高引起的匹配速度慢且无关维度的干扰等问题。其次,采用模糊C均值聚类方法对原始交通流数据进行了聚类筛选,以减少所需模式的数量,提升近邻搜索的速度。接着,使用多维搜索结构KD数代替常用的线性表作为模式库的存储结构,实现了模式的高速搜索。最后,融合支持向量机方法,运用搜索到的K个模式估计出最终待预测变量的值。进一步使用深圳市的实际数据对算法进行了检验。结果表明:该算法相比传统方法在运算效率和精度方面都有一定的提高,能够满足实时大规模交通流预测所需要的预测准确度、实时性和动态性等方面的要求,具有一定的应用价值。 展开更多
关键词 智能交通 短时交通流预测 非参数回归算法 数据约减
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部