In this paper, we consider the perturbations of two non-Hamiltonian integrable systems(1.3)μ, (4.1)μ. For the former,it is proved that the system under the polynomial perturbations hasat most f-n/2] limit cycles in ...In this paper, we consider the perturbations of two non-Hamiltonian integrable systems(1.3)μ, (4.1)μ. For the former,it is proved that the system under the polynomial perturbations hasat most f-n/2] limit cycles in the finite plane and the upper bound is sharp. The proof relies on acareful analysis of a related Abelian integral. For the latter, we obtain an estimate number of isolatedzeros of the corresponding Abelian integral.展开更多
A discrete spectral problem is discussed, and a hierarchy of integrable nonlinear lattice equations related to this spectral problem is devised. The new integrable symplectic map and finite-dimensional integrable syst...A discrete spectral problem is discussed, and a hierarchy of integrable nonlinear lattice equations related to this spectral problem is devised. The new integrable symplectic map and finite-dimensional integrable systems are given by nonlinearization method. The binary Bargmann constraint gives rise to a B?cklund transformation for the resulting integrable lattice equations.展开更多
A convenient method to exactly solve the quantum-nonautonomous systems with non-Hermitian Hamiltonians is proposed. It is shown that a nonadiabatic complete biorthonormal set can be easily obtained by the gauge transf...A convenient method to exactly solve the quantum-nonautonomous systems with non-Hermitian Hamiltonians is proposed. It is shown that a nonadiabatic complete biorthonormal set can be easily obtained by the gauge transformation method in which the algebraic structure of systems has been used. The nonunitary evolution operator is also found by choosing a special gauge function. All auxiliary parameters introduced in the present approach are only determined by some algebraic equations. The dynamics of two quantum-nonautonomous systems ruled by non-Hermitian Hamiltonians, including a two-photon ionization process involving two-state only and a mesoscopic RLC circuit with a source, are treated as the demonstration of our general approach.展开更多
This paper focuses on studying a new energy-work relationship numericM integration scheme of nonholonomic Hamiltonian systems. The signal-stage numerical, multi-stage and parallel composition numerical integration sch...This paper focuses on studying a new energy-work relationship numericM integration scheme of nonholonomic Hamiltonian systems. The signal-stage numerical, multi-stage and parallel composition numerical integration schemes are presented. The high-order energy-work relation scheme of the system is constructed by a parallel connection of n multi-stage schemes of order 2, its order of accuracy is 2n. The connection, which is discrete analogue of usual case, between the change of energy and work of nonholonomic constraint forces is obtained for nonholonomie Hamiltonian systems. This paper also gives that there is smaller error of the scheme when taking a large number of stages than a less one. Finally, an applied example is discussed to illustrate these results.展开更多
A 3-dimensional Lie algebra sμ(3) is obtained with the help of the known Lie algebra. Based on the sμ(3), a new discrete 3 × 3 matrix spectral problem with three potentials is constructed. In virtue of disc...A 3-dimensional Lie algebra sμ(3) is obtained with the help of the known Lie algebra. Based on the sμ(3), a new discrete 3 × 3 matrix spectral problem with three potentials is constructed. In virtue of discrete zero curvature equations, a new matrix Lax representation for the hierarchy of the discrete lattice soliton equations is acquired. It is shown that the hierarchy possesses a Hamiltonian operator and a hereditary recursion operator, which implies that there exist infinitely many common commuting symmetries and infinitely many common commuting conserved functionals.展开更多
The author proves a sharper estimate on the minimal period for periodic solutions of autonomous second order Hamiltonian systems under precisely Rabinowitz' superquadratic condition.
The authors study the existence of homoclinic type solutions for the following system of diffusion equations on R × RN:{atu-xu + b ·▽xu + au + V(t,x)v = Hv(t,x,u,v),-atv-xv-b·▽xv + av + V(...The authors study the existence of homoclinic type solutions for the following system of diffusion equations on R × RN:{atu-xu + b ·▽xu + au + V(t,x)v = Hv(t,x,u,v),-atv-xv-b·▽xv + av + V(t,x)u = Hu(t,x,u,v),where z =(u,v):R × RN → Rm × Rm,a 〉 0,b =(b1,···,bN) is a constant vector and V ∈ C(R × RN,R),H ∈ C1(R × RN × R2m,R).Under suitable conditions on V(t,x) and the nonlinearity for H(t,x,z),at least one non-stationary homoclinic solution with least energy is obtained.展开更多
Herman constructed an autonomous system of two degrees of freedom which says that in non-convex situations, oscillations do happen and Aubry-Mather Theory cannot apply (see the results due to W. F. Chen in 1992). In t...Herman constructed an autonomous system of two degrees of freedom which says that in non-convex situations, oscillations do happen and Aubry-Mather Theory cannot apply (see the results due to W. F. Chen in 1992). In this paper, it is shown that although the orbits could visit a region far away from the initial point in phase space, they can only exist in some fixed regions in I = (I1 , I2 ) plane. Moreover, Aubry-Mather Theory can be applied outside the regions.展开更多
Two Poisson brackets for the N-component coupled nonlinear Schrdinger(NLS) equation are derived by using the variantional principle. The first one is called the equal-time Poisson bracket which does not depend on time...Two Poisson brackets for the N-component coupled nonlinear Schrdinger(NLS) equation are derived by using the variantional principle. The first one is called the equal-time Poisson bracket which does not depend on time but only on the space variable. Actually it is just the usual one describing the time evolution of system in the traditional theory of integrable Hamiltonian systems. The second one is equal-space and new. It is shown that the spatial part of Lax pair with respect to the equal-time Poisson bracket and temporal part of Lax pair with respect to the equal-space Poisson bracket share the same r-matrix formulation. These properties are similar to that of the NLS equation.展开更多
文摘In this paper, we consider the perturbations of two non-Hamiltonian integrable systems(1.3)μ, (4.1)μ. For the former,it is proved that the system under the polynomial perturbations hasat most f-n/2] limit cycles in the finite plane and the upper bound is sharp. The proof relies on acareful analysis of a related Abelian integral. For the latter, we obtain an estimate number of isolatedzeros of the corresponding Abelian integral.
文摘A discrete spectral problem is discussed, and a hierarchy of integrable nonlinear lattice equations related to this spectral problem is devised. The new integrable symplectic map and finite-dimensional integrable systems are given by nonlinearization method. The binary Bargmann constraint gives rise to a B?cklund transformation for the resulting integrable lattice equations.
文摘A convenient method to exactly solve the quantum-nonautonomous systems with non-Hermitian Hamiltonians is proposed. It is shown that a nonadiabatic complete biorthonormal set can be easily obtained by the gauge transformation method in which the algebraic structure of systems has been used. The nonunitary evolution operator is also found by choosing a special gauge function. All auxiliary parameters introduced in the present approach are only determined by some algebraic equations. The dynamics of two quantum-nonautonomous systems ruled by non-Hermitian Hamiltonians, including a two-photon ionization process involving two-state only and a mesoscopic RLC circuit with a source, are treated as the demonstration of our general approach.
基金supported by National Natural Science Foundation of China under Grant No.10672143the Natural Science Foundation of Henan Province under Grant No.0511022200
文摘This paper focuses on studying a new energy-work relationship numericM integration scheme of nonholonomic Hamiltonian systems. The signal-stage numerical, multi-stage and parallel composition numerical integration schemes are presented. The high-order energy-work relation scheme of the system is constructed by a parallel connection of n multi-stage schemes of order 2, its order of accuracy is 2n. The connection, which is discrete analogue of usual case, between the change of energy and work of nonholonomic constraint forces is obtained for nonholonomie Hamiltonian systems. This paper also gives that there is smaller error of the scheme when taking a large number of stages than a less one. Finally, an applied example is discussed to illustrate these results.
基金Supported by the Science and Technology Plan project of the Educational Department of Shandong Province of China under Grant No. J09LA54the research project of "SUST Spring Bud" of Shandong university of science and technology of China under Grant No. 2009AZZ071
文摘A 3-dimensional Lie algebra sμ(3) is obtained with the help of the known Lie algebra. Based on the sμ(3), a new discrete 3 × 3 matrix spectral problem with three potentials is constructed. In virtue of discrete zero curvature equations, a new matrix Lax representation for the hierarchy of the discrete lattice soliton equations is acquired. It is shown that the hierarchy possesses a Hamiltonian operator and a hereditary recursion operator, which implies that there exist infinitely many common commuting symmetries and infinitely many common commuting conserved functionals.
文摘The author proves a sharper estimate on the minimal period for periodic solutions of autonomous second order Hamiltonian systems under precisely Rabinowitz' superquadratic condition.
基金Project supported by the National Natural Science Foundation of China (No.10971194)the Zhejiang Provincial Natural Science Foundation of China (Nos.Y7080008,R6090109)the Zhejiang Innovation Project (No.T200905)
文摘The authors study the existence of homoclinic type solutions for the following system of diffusion equations on R × RN:{atu-xu + b ·▽xu + au + V(t,x)v = Hv(t,x,u,v),-atv-xv-b·▽xv + av + V(t,x)u = Hu(t,x,u,v),where z =(u,v):R × RN → Rm × Rm,a 〉 0,b =(b1,···,bN) is a constant vector and V ∈ C(R × RN,R),H ∈ C1(R × RN × R2m,R).Under suitable conditions on V(t,x) and the nonlinearity for H(t,x,z),at least one non-stationary homoclinic solution with least energy is obtained.
基金Project Supported by the Graduate Student Research Fellowship of Jiangsu Province of China (No.CX10B_002Z)
文摘Herman constructed an autonomous system of two degrees of freedom which says that in non-convex situations, oscillations do happen and Aubry-Mather Theory cannot apply (see the results due to W. F. Chen in 1992). In this paper, it is shown that although the orbits could visit a region far away from the initial point in phase space, they can only exist in some fixed regions in I = (I1 , I2 ) plane. Moreover, Aubry-Mather Theory can be applied outside the regions.
基金Supported by National Natural Science Foundation of China under Grant Nos.11271168 and 11671177by the Priority Academic Program Development of Jiangsu Higher Education Institutionsby Innovation Project of the Graduate Students in Jiangsu Normal University
文摘Two Poisson brackets for the N-component coupled nonlinear Schrdinger(NLS) equation are derived by using the variantional principle. The first one is called the equal-time Poisson bracket which does not depend on time but only on the space variable. Actually it is just the usual one describing the time evolution of system in the traditional theory of integrable Hamiltonian systems. The second one is equal-space and new. It is shown that the spatial part of Lax pair with respect to the equal-time Poisson bracket and temporal part of Lax pair with respect to the equal-space Poisson bracket share the same r-matrix formulation. These properties are similar to that of the NLS equation.