期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
智能放煤理论与技术研究进展
1
作者 王家臣 杨胜利 +2 位作者 李良晖 张锦旺 魏炜杰 《工矿自动化》 CSCD 北大核心 2024年第9期1-12,共12页
综放开采技术是厚及特厚煤层开采的有效方法,已成为我国在世界煤炭开采行业的标志性技术。综述了“四要素”放煤理论、顶煤采出率与含矸率关系、基于块度分布的采出率预测模型、煤流瞬时含矸率-累计含矸率关系等智能放煤理论研究进展。... 综放开采技术是厚及特厚煤层开采的有效方法,已成为我国在世界煤炭开采行业的标志性技术。综述了“四要素”放煤理论、顶煤采出率与含矸率关系、基于块度分布的采出率预测模型、煤流瞬时含矸率-累计含矸率关系等智能放煤理论研究进展。分析了智能放煤技术难点,指出含矸率是影响顶煤采出率和煤质的关键因素,放煤过程中含矸率的快速、准确计算是智能放煤技术突破的重点和关键。将智能放煤技术分为非图像识别智能放煤技术和图像识别智能放煤技术2类,对不同技术的研究进展、优缺点及使用条件进行了详细分析。非图像识别智能放煤技术包括记忆放煤技术、声音振动信号识别技术、γ射线探测技术、探地雷达技术、微波照射+红外探测技术、激光扫描放煤量监测技术等,图像识别智能放煤技术包括井下照度环境精准控制、放煤图像去尘算法、含矸率计算精度保障策略、煤岩红外图像识别等。 展开更多
关键词 综放开采 智能放煤 “四要素”放煤理论 含矸率 图像识别 非图像识别
下载PDF
Inverse design of an integrated-nanophotonics optical neural network 被引量:10
2
作者 Yurui Qu Huanzheng Zhu +4 位作者 Yichen Shen Jin Zhang Chenning Tao Pintu Ghosh Min Qiu 《Science Bulletin》 SCIE EI CAS CSCD 2020年第14期1177-1183,M0004,共8页
Artificial neural networks have dramatically improved the performance of many machine-learning applications such as image recognition and natural language processing. However, the electronic hardware implementations o... Artificial neural networks have dramatically improved the performance of many machine-learning applications such as image recognition and natural language processing. However, the electronic hardware implementations of the above-mentioned tasks are facing performance ceiling because Moore’s Law is slowing down. In this article, we propose an optical neural network architecture based on optical scattering units to implement deep learning tasks with fast speed, low power consumption and small footprint.The optical scattering units allow light to scatter back and forward within a small region and can be optimized through an inverse design method. The optical scattering units can implement high-precision stochastic matrix multiplication with mean squared error < 10-4 and a mere 4*4 um2 footprint.Furthermore, an optical neural network framework based on optical scattering units is constructed by introducing "Kernel Matrix", which can achieve 97.1% accuracy on the classic image classification dataset MNIST. 展开更多
关键词 Optical neural networks Deep learning Inverse design Integrated nanophotonics Silicon photonics
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部