Wavelet transforms have been successfully used in seismic data processing with their ability for local time - frequency analysis. However, identification of directionality is limited because wavelet transform coeffici...Wavelet transforms have been successfully used in seismic data processing with their ability for local time - frequency analysis. However, identification of directionality is limited because wavelet transform coefficients reveal only three spatial orientations. Whereas the ridgelet transform has a superior capability for direction detection and the ability to process signals with linearly changing characteristics. In this paper, we present the issue of low signal-to-noise ratio (SNR) seismic data processing based on the ridgelet transform. Actual seismic data with low SNR from south China has been processed using ridgelet transforms to improve the SNR and the continuity of seismic events. The results show that the ridgelet transform is better than the wavelet transform for these tasks.展开更多
Seismic inversion and basic theory are briefly presented and the main idea of this method is introduced. Both non-linear wave equation inversion technique and Complete Utilization of Samples Information (CUSI) neural ...Seismic inversion and basic theory are briefly presented and the main idea of this method is introduced. Both non-linear wave equation inversion technique and Complete Utilization of Samples Information (CUSI) neural network analysis are used in lithological interpretation in Jibei coal field. The prediction results indicate that this method can provide reliable data for thin coal exploitation and promising area evaluation.展开更多
In the present paper a vibrational differential equation governing on a rigid beam on viscoelastic foundation has been investigated. The nonlinear differential equation governing on this vibrating system is solved by ...In the present paper a vibrational differential equation governing on a rigid beam on viscoelastic foundation has been investigated. The nonlinear differential equation governing on this vibrating system is solved by a simple and innovative approach, which has been called Akbari-Ganji's method (AGM). AGM is a very suitable computational process and is usable for solving various nonlinear differential equations. Moreover, using AGM which solving a set of algebraic equations, complicated nonlinear equations can easily be solved without any mathematical operations. Also, the damping ratio and energy lost per cycle for three cycles have been investigated. Furthermore, comparisons have been made between the obtained results by numerical method (Runk45) and AGM. Results showed the high accuracy of AGM. The results also showed that by increasing the amount of initial amplitude of vibration (A), the value of damping ratio will be increased, and the energy lost per cycle decreases by increasing the number of cycle. It is concluded that AGM is a reliable and precise approach for solving differential equations. On the other hand, it is better to say that AGM is able to solve linear and nonlinear differential equations directly in most of the situations. This means that the final solution can be obtained without any dimensionless procedure Therefore, AGM can be considered as a significant progress in nonlinear sciences.展开更多
Rossby waves are the most important waves in the atmosphere and ocean,and are parts of a large-scale system in fluid.The theory and observation show that,they satisfy quasi-geostrophic and quasi-static equilibrium app...Rossby waves are the most important waves in the atmosphere and ocean,and are parts of a large-scale system in fluid.The theory and observation show that,they satisfy quasi-geostrophic and quasi-static equilibrium approximations.In this paper,solitary Rossby waves induced by linear topography in barotropic fluids with a shear flow are studied.In order to simplify the problem,the topography is taken as a linear function of latitude variable y,then employing a weakly nonlinear method and a perturbation method,a KdV(Korteweg-de Vries) equation describing evolution of the amplitude of solitary Rossby waves induced by linear topography is derived.The results show that the variation of linear topography can induce the solitary Rossby waves in barotropic fluids with a shear flow,and extend the classical geophysical theory of fluid dynamics.展开更多
A new image encryption approach is proposed.First,a sort transformation based on nonlinear chaoticalgorithm is used to shuffle the positions of image pixels.Then the states of hyper-chaos are used to change the greyva...A new image encryption approach is proposed.First,a sort transformation based on nonlinear chaoticalgorithm is used to shuffle the positions of image pixels.Then the states of hyper-chaos are used to change the greyvalues of the shuffled image according to the changed chaotic values of the same position between the above nonlinearchaotic sequence and the sorted chaotic sequence.The experimental results demonstrate that the image encryptionscheme based on a shuffling map shows advantages of large key space and high-level security.Compared with someencryption algorithms,the suggested encryption scheme is more secure.展开更多
The characteristics of climatic change and fiver runoff, as well as the response of fiver runoff to climatic change in the northern Xinjiang are analyzed on the basis of the hydrological and meteorological data over t...The characteristics of climatic change and fiver runoff, as well as the response of fiver runoff to climatic change in the northern Xinjiang are analyzed on the basis of the hydrological and meteorological data over the last 50 years by the methods of Mann-Kendall nonparametric test and the nonlinear regression model. The results show that: 1) The temperature and the precipitation increased significantly in the whole northern Xinjiang, but the precipitation displayed no obvious change, or even a decreasing trend in the northern mountainous area of the northern Xinjiang. 2) River runoff varied in different regions in the northern Xinjiang. It significantly increased in the northern slope of the Tianshan Mountains and the north of the northern Xinjiang (p = 0.05), while slightly ificreased in the west of the northern Xinjiang. 3) North Atlantic Oscillation (NAO) affects fiver runoff by influencing temperature and precipitation. The NAO and precipitation had apparent significant correlations with the fiver runoff, but the temperature did not in the northern Xinjiang. Since the mid-1990s fiver runoff increase was mainly caused by the increasing temperature in the northern slope of the Tianshan Mountains and the north of the northern Xinjiang. Increased precipitation resulted in increased fiver runoff in the west of the northern Xinjiang.展开更多
The basic principle of interval arithmetic and the basic algorithm of the interval Newton methods are introduced.The prototype algorithm can not find any zero in an interval that has zero sometimes,that is,it is insta...The basic principle of interval arithmetic and the basic algorithm of the interval Newton methods are introduced.The prototype algorithm can not find any zero in an interval that has zero sometimes,that is,it is instable.So the prototype relaxation procedure is improved in this paper.Additionally,an immediate test of the existence of a solution following branch_and_bound is proposed,which avoids unwanted computations in those intervals that have no solution.The numerical results demonstrat that the improved interval Newton method is superior to prototype algorithm in terms of solution quality,stability and convergent speed.展开更多
Based on the dynamic simulation of the 3 D structure the sedimentary modeling, the unit entity model has been adopted to transfer the heterogeneous complex passage system into limited simple homogeneous entity, and th...Based on the dynamic simulation of the 3 D structure the sedimentary modeling, the unit entity model has been adopted to transfer the heterogeneous complex passage system into limited simple homogeneous entity, and then the traditional dynamic simulation has been used to calculate the phase and the drive forces of the hydrocarbon , and the artificial neural network(ANN) technology has been applied to resolve such problems as the direction, velocity and quantity of the hydrocarbon migration among the unit entities. Through simulating of petroleum migration and accumulation in Zhu Ⅲ depression, the complex mechanism of hydrocarbon migration and accumulation has been opened out.展开更多
基金This paper is supported by China Petrochemical Key Project in the"11th Five-Year"Plan Technology and the Doctorate Fund of Ministry of Education of China (No.20050491504)
文摘Wavelet transforms have been successfully used in seismic data processing with their ability for local time - frequency analysis. However, identification of directionality is limited because wavelet transform coefficients reveal only three spatial orientations. Whereas the ridgelet transform has a superior capability for direction detection and the ability to process signals with linearly changing characteristics. In this paper, we present the issue of low signal-to-noise ratio (SNR) seismic data processing based on the ridgelet transform. Actual seismic data with low SNR from south China has been processed using ridgelet transforms to improve the SNR and the continuity of seismic events. The results show that the ridgelet transform is better than the wavelet transform for these tasks.
文摘Seismic inversion and basic theory are briefly presented and the main idea of this method is introduced. Both non-linear wave equation inversion technique and Complete Utilization of Samples Information (CUSI) neural network analysis are used in lithological interpretation in Jibei coal field. The prediction results indicate that this method can provide reliable data for thin coal exploitation and promising area evaluation.
文摘In the present paper a vibrational differential equation governing on a rigid beam on viscoelastic foundation has been investigated. The nonlinear differential equation governing on this vibrating system is solved by a simple and innovative approach, which has been called Akbari-Ganji's method (AGM). AGM is a very suitable computational process and is usable for solving various nonlinear differential equations. Moreover, using AGM which solving a set of algebraic equations, complicated nonlinear equations can easily be solved without any mathematical operations. Also, the damping ratio and energy lost per cycle for three cycles have been investigated. Furthermore, comparisons have been made between the obtained results by numerical method (Runk45) and AGM. Results showed the high accuracy of AGM. The results also showed that by increasing the amount of initial amplitude of vibration (A), the value of damping ratio will be increased, and the energy lost per cycle decreases by increasing the number of cycle. It is concluded that AGM is a reliable and precise approach for solving differential equations. On the other hand, it is better to say that AGM is able to solve linear and nonlinear differential equations directly in most of the situations. This means that the final solution can be obtained without any dimensionless procedure Therefore, AGM can be considered as a significant progress in nonlinear sciences.
基金Supported by the Knowledge Innovation Program of Chinese Academy of Sciences (KZCX1-YW-12)Scientific Research Foundation for the Returned Overseas Chinese Scholar, and by Natural Science Foundation of Inner Mongolia (200408020112)
文摘Rossby waves are the most important waves in the atmosphere and ocean,and are parts of a large-scale system in fluid.The theory and observation show that,they satisfy quasi-geostrophic and quasi-static equilibrium approximations.In this paper,solitary Rossby waves induced by linear topography in barotropic fluids with a shear flow are studied.In order to simplify the problem,the topography is taken as a linear function of latitude variable y,then employing a weakly nonlinear method and a perturbation method,a KdV(Korteweg-de Vries) equation describing evolution of the amplitude of solitary Rossby waves induced by linear topography is derived.The results show that the variation of linear topography can induce the solitary Rossby waves in barotropic fluids with a shear flow,and extend the classical geophysical theory of fluid dynamics.
基金Supported by Research Fond for the Doctoral of Higher Education of China,the Hunan Natural Science Foundation under Grant No.05JJ30121the Scientific Research Fund of Hunan Provincial Education Department under Grant No.08B011Educational Research Fund of Hunan Provincial Education Department under Grant No.09C013
文摘A new image encryption approach is proposed.First,a sort transformation based on nonlinear chaoticalgorithm is used to shuffle the positions of image pixels.Then the states of hyper-chaos are used to change the greyvalues of the shuffled image according to the changed chaotic values of the same position between the above nonlinearchaotic sequence and the sorted chaotic sequence.The experimental results demonstrate that the image encryptionscheme based on a shuffling map shows advantages of large key space and high-level security.Compared with someencryption algorithms,the suggested encryption scheme is more secure.
基金Under the auspices of Knowledge Innovation Programs of Chinese Academy of Sciences (No. KZCX2-YW-127, KZCX2-XB2-03-01, KZCX2-Q10-5-4)
文摘The characteristics of climatic change and fiver runoff, as well as the response of fiver runoff to climatic change in the northern Xinjiang are analyzed on the basis of the hydrological and meteorological data over the last 50 years by the methods of Mann-Kendall nonparametric test and the nonlinear regression model. The results show that: 1) The temperature and the precipitation increased significantly in the whole northern Xinjiang, but the precipitation displayed no obvious change, or even a decreasing trend in the northern mountainous area of the northern Xinjiang. 2) River runoff varied in different regions in the northern Xinjiang. It significantly increased in the northern slope of the Tianshan Mountains and the north of the northern Xinjiang (p = 0.05), while slightly ificreased in the west of the northern Xinjiang. 3) North Atlantic Oscillation (NAO) affects fiver runoff by influencing temperature and precipitation. The NAO and precipitation had apparent significant correlations with the fiver runoff, but the temperature did not in the northern Xinjiang. Since the mid-1990s fiver runoff increase was mainly caused by the increasing temperature in the northern slope of the Tianshan Mountains and the north of the northern Xinjiang. Increased precipitation resulted in increased fiver runoff in the west of the northern Xinjiang.
文摘The basic principle of interval arithmetic and the basic algorithm of the interval Newton methods are introduced.The prototype algorithm can not find any zero in an interval that has zero sometimes,that is,it is instable.So the prototype relaxation procedure is improved in this paper.Additionally,an immediate test of the existence of a solution following branch_and_bound is proposed,which avoids unwanted computations in those intervals that have no solution.The numerical results demonstrat that the improved interval Newton method is superior to prototype algorithm in terms of solution quality,stability and convergent speed.
文摘Based on the dynamic simulation of the 3 D structure the sedimentary modeling, the unit entity model has been adopted to transfer the heterogeneous complex passage system into limited simple homogeneous entity, and then the traditional dynamic simulation has been used to calculate the phase and the drive forces of the hydrocarbon , and the artificial neural network(ANN) technology has been applied to resolve such problems as the direction, velocity and quantity of the hydrocarbon migration among the unit entities. Through simulating of petroleum migration and accumulation in Zhu Ⅲ depression, the complex mechanism of hydrocarbon migration and accumulation has been opened out.