Backfill mining is one of the most important technical means for controlling strata movement and reducing surface subsidence and environmental damage during exploitation of underground coal resources. Ensuring the sta...Backfill mining is one of the most important technical means for controlling strata movement and reducing surface subsidence and environmental damage during exploitation of underground coal resources. Ensuring the stability of the backfill bodies is the primary prerequisite for maintaining the safety of the backfilling working face, and the loading characteristics of backfill are closely related to the deformation and subsidence of the roof. Elastic thin plate model was used to explore the non-uniform subsidence law of the roof, and then the non-uniform distribution characteristics of backfill bodies’ load were revealed. Through a self-developed non-uniform loading device combined with acoustic emission (AE) and digital image correlation (DIC) monitoring technology, the synergistic dynamic evolution law of the bearing capacity, apparent crack, and internal fracture of cemented coal gangue backfills (CCGBs) under loads with different degrees of non-uniformity was deeply explored. The results showed that: 1) The uniaxial compressive strength (UCS) of CCGB increased and then decreased with an increase in the degree of non-uniformity of load (DNL). About 40% of DNL was the inflection point of DNL-UCS curve and when DNL exceeded 40%, the strength decreased in a cliff-like manner;2) A positive correlation was observed between the AE ringing count and UCS during the loading process of the specimen, which was manifested by a higher AE ringing count of the high-strength specimen. 3) Shear cracks gradually increased and failure mode of specimens gradually changed from “X” type dominated by tension cracks to inverted “Y” type dominated by shear cracks with an increase in DNL, and the crack opening displacement at the peak stress decreased and then increased. The crack opening displacement at 40% of the DNL was the smallest. This was consistent with the judgment of crack size based on the AE b-value, i. e., it showed the typical characteristics of “small b-value-large crack and large b-value-small crack”. The research results are of significance for preventing the instability and failure of backfill.展开更多
Suction bucket foundations can be divided into four compartments by cruciform internal bulkheads,thereby yielding better capacity in certain conditions than those without internal bulkheads.As yet,no systematic study ...Suction bucket foundations can be divided into four compartments by cruciform internal bulkheads,thereby yielding better capacity in certain conditions than those without internal bulkheads.As yet,no systematic study has been conducted regarding the effects of cruciform internal bulkheads on the capacities of suction bucket foundations.In this study,we established a large number of finite element models of suction bucket foundations with and without cruciform internal bulkheads and of solid embedded circular foundations.We found the uniaxial capacities and failure modes of suction bucket foundations with various depth ratios to remain basically unaffected by internal bulkheads in uniform clays.However,in inhomogeneous clay with high strength heterogeneity,we observed the uniaxial moment and horizontal capacities and corresponding failure modes of suction bucket foundations with a low depth ratio to be obviously affected by internal bulkheads.In this case,the uniaxial moment capacities,in particular,as well as the horizontal capacities of suction bucket foundations with cruciform internal bulkheads become obviously greater than those without internal bulkheads.Under combined loading,we found the failure envelopes of suction bucket foundations with and without cruciform internal bulkheads and of solid circular foundation to also be basically consistent in uniform clays.However,in inhomogeneous clay with high strength heterogeneity,cruciform internal bulkheads can obviously change the shapes of the failure envelopes of bucket foundations with a small depth ratio.We conclude that when the acting vertical load or foundation depth is relatively small,suction bucket foundations with cruciform internal bulkheads can be subjected to larger moment and horizontal loads in soft clays with high strength heterogeneity.展开更多
基金Project(51925402) supported by the National Natural Science Foundation for Distinguished Young Scholars of ChinaProject(202303021211060) supported by the Natural Science Research General Program for Shanxi Provincial Basic Research Program,China+1 种基金Project(U22A20169) supported by the Joint Fund Project of National Natural Science Foundation of ChinaProjects(2021SX-TD001, 2021SX-TD002) supported by the Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering,China。
文摘Backfill mining is one of the most important technical means for controlling strata movement and reducing surface subsidence and environmental damage during exploitation of underground coal resources. Ensuring the stability of the backfill bodies is the primary prerequisite for maintaining the safety of the backfilling working face, and the loading characteristics of backfill are closely related to the deformation and subsidence of the roof. Elastic thin plate model was used to explore the non-uniform subsidence law of the roof, and then the non-uniform distribution characteristics of backfill bodies’ load were revealed. Through a self-developed non-uniform loading device combined with acoustic emission (AE) and digital image correlation (DIC) monitoring technology, the synergistic dynamic evolution law of the bearing capacity, apparent crack, and internal fracture of cemented coal gangue backfills (CCGBs) under loads with different degrees of non-uniformity was deeply explored. The results showed that: 1) The uniaxial compressive strength (UCS) of CCGB increased and then decreased with an increase in the degree of non-uniformity of load (DNL). About 40% of DNL was the inflection point of DNL-UCS curve and when DNL exceeded 40%, the strength decreased in a cliff-like manner;2) A positive correlation was observed between the AE ringing count and UCS during the loading process of the specimen, which was manifested by a higher AE ringing count of the high-strength specimen. 3) Shear cracks gradually increased and failure mode of specimens gradually changed from “X” type dominated by tension cracks to inverted “Y” type dominated by shear cracks with an increase in DNL, and the crack opening displacement at the peak stress decreased and then increased. The crack opening displacement at 40% of the DNL was the smallest. This was consistent with the judgment of crack size based on the AE b-value, i. e., it showed the typical characteristics of “small b-value-large crack and large b-value-small crack”. The research results are of significance for preventing the instability and failure of backfill.
基金supported by the National Natural Science Foundation of China(Nos.51479133,51109157)the Elite Scholar Program of Tianjin University(2017XRG0040)
文摘Suction bucket foundations can be divided into four compartments by cruciform internal bulkheads,thereby yielding better capacity in certain conditions than those without internal bulkheads.As yet,no systematic study has been conducted regarding the effects of cruciform internal bulkheads on the capacities of suction bucket foundations.In this study,we established a large number of finite element models of suction bucket foundations with and without cruciform internal bulkheads and of solid embedded circular foundations.We found the uniaxial capacities and failure modes of suction bucket foundations with various depth ratios to remain basically unaffected by internal bulkheads in uniform clays.However,in inhomogeneous clay with high strength heterogeneity,we observed the uniaxial moment and horizontal capacities and corresponding failure modes of suction bucket foundations with a low depth ratio to be obviously affected by internal bulkheads.In this case,the uniaxial moment capacities,in particular,as well as the horizontal capacities of suction bucket foundations with cruciform internal bulkheads become obviously greater than those without internal bulkheads.Under combined loading,we found the failure envelopes of suction bucket foundations with and without cruciform internal bulkheads and of solid circular foundation to also be basically consistent in uniform clays.However,in inhomogeneous clay with high strength heterogeneity,cruciform internal bulkheads can obviously change the shapes of the failure envelopes of bucket foundations with a small depth ratio.We conclude that when the acting vertical load or foundation depth is relatively small,suction bucket foundations with cruciform internal bulkheads can be subjected to larger moment and horizontal loads in soft clays with high strength heterogeneity.