The stress state around circular openings,such as boreholes,shafts,and tunnels,is usually needed to be evaluated.Solutions for stresses,strains and ultimate bearing capacities of pressurized hollow cylinder are common...The stress state around circular openings,such as boreholes,shafts,and tunnels,is usually needed to be evaluated.Solutions for stresses,strains and ultimate bearing capacities of pressurized hollow cylinder are common cases.Stress analytical method for plane problem of a double-layered thick-walled cylinder subjected to a type of non-uniform pressure on the outer surface and uniform radial pressure on the inner surface is given.The power series method of complex function is used.The stress analytical solution is obtained with the assumption that two layers of a cylinder are fully contacted.The distributions of normal and tangential contact stress along the interface,tangential stress on the inner boundary and stresses in the radial direction at θ=0°,45° and 90°,are obtained.An example indicates that,when the elastic modulus of the inner layer of a double-layered thick-walled cylinder is smaller than that of the outer layer,the tangential stress is smaller than that in the corresponding point for a traditional cylinder composed of homogeneous materials.In that way,stress concentration at the inner surface can be alleviated and the stress distribution is more uniform.This is a capable way to enhance the elastic ultimate bearing capacity of thick-walled cylinder.展开更多
The present article deals with thermally stratified stagnation-point flow saturated in porous medium on surface of variable thickness along with more convincing and reliable surface condition termed as melting heat tr...The present article deals with thermally stratified stagnation-point flow saturated in porous medium on surface of variable thickness along with more convincing and reliable surface condition termed as melting heat transfer.Homogeneous–heterogeneous reaction and radiative effects have been further taken into account to reconnoiterproperties of heat transfer.Melting heat transfer and phenomenon of homogeneous–heterogeneous reaction have engrossed widespread utilization in purification of metals,welding process,electroslag melting,biochemical systems,catalysis and several industrial developments.Suitable transformations are utilized to attain a scheme of ordinary differential equations possessing exceedingly nonlinear nature.Homotopic process is employed to develop convergent solutions of the resulting problem.Discussion regarding velocity,thermal field and concentration distribution for several involved parameters is pivotal part.Graphical behaviors of skin friction coefficient and Nusselt number are also portrayed.Concentration of the reactants is found to depreciate as a result of strength of both heterogeneous and homogeneous reaction parameters.With existence of melting phenomenon,declining attitude of fluid temperature is observed for higher radiation parameter.展开更多
A new SO1 high-voltage device structure with nonuniform thickness drift region (n-uni SOl) and its optimiza- tion design method are proposed. Owing to the nonuniform thickness drift region, the electric field in the...A new SO1 high-voltage device structure with nonuniform thickness drift region (n-uni SOl) and its optimiza- tion design method are proposed. Owing to the nonuniform thickness drift region, the electric field in the SOl layer is modulated and the electric field in the buried layer is enhanced, resulting in an enhancement of breakdown voltage. An analytical model taking the modulation effect into account is presented to optimize the device structure. Based on the analytical model, the dependencies of the electric field distribution and breakdown voltage on the device parameters are investigated. Numerical simulations support the analytical model. The breakdown voltage of the n-uni SOl LDMOS with n = 3 is twice as high as that of a conventional SO1 while its on-resistance maintains low.展开更多
基金Projects(50874047,51074014,51174014)supported by the National Natural Science Foundation of China
文摘The stress state around circular openings,such as boreholes,shafts,and tunnels,is usually needed to be evaluated.Solutions for stresses,strains and ultimate bearing capacities of pressurized hollow cylinder are common cases.Stress analytical method for plane problem of a double-layered thick-walled cylinder subjected to a type of non-uniform pressure on the outer surface and uniform radial pressure on the inner surface is given.The power series method of complex function is used.The stress analytical solution is obtained with the assumption that two layers of a cylinder are fully contacted.The distributions of normal and tangential contact stress along the interface,tangential stress on the inner boundary and stresses in the radial direction at θ=0°,45° and 90°,are obtained.An example indicates that,when the elastic modulus of the inner layer of a double-layered thick-walled cylinder is smaller than that of the outer layer,the tangential stress is smaller than that in the corresponding point for a traditional cylinder composed of homogeneous materials.In that way,stress concentration at the inner surface can be alleviated and the stress distribution is more uniform.This is a capable way to enhance the elastic ultimate bearing capacity of thick-walled cylinder.
文摘The present article deals with thermally stratified stagnation-point flow saturated in porous medium on surface of variable thickness along with more convincing and reliable surface condition termed as melting heat transfer.Homogeneous–heterogeneous reaction and radiative effects have been further taken into account to reconnoiterproperties of heat transfer.Melting heat transfer and phenomenon of homogeneous–heterogeneous reaction have engrossed widespread utilization in purification of metals,welding process,electroslag melting,biochemical systems,catalysis and several industrial developments.Suitable transformations are utilized to attain a scheme of ordinary differential equations possessing exceedingly nonlinear nature.Homotopic process is employed to develop convergent solutions of the resulting problem.Discussion regarding velocity,thermal field and concentration distribution for several involved parameters is pivotal part.Graphical behaviors of skin friction coefficient and Nusselt number are also portrayed.Concentration of the reactants is found to depreciate as a result of strength of both heterogeneous and homogeneous reaction parameters.With existence of melting phenomenon,declining attitude of fluid temperature is observed for higher radiation parameter.
文摘A new SO1 high-voltage device structure with nonuniform thickness drift region (n-uni SOl) and its optimiza- tion design method are proposed. Owing to the nonuniform thickness drift region, the electric field in the SOl layer is modulated and the electric field in the buried layer is enhanced, resulting in an enhancement of breakdown voltage. An analytical model taking the modulation effect into account is presented to optimize the device structure. Based on the analytical model, the dependencies of the electric field distribution and breakdown voltage on the device parameters are investigated. Numerical simulations support the analytical model. The breakdown voltage of the n-uni SOl LDMOS with n = 3 is twice as high as that of a conventional SO1 while its on-resistance maintains low.