自由漂浮空间机器人(free-floating space robot,FFSR)是进行在轨服务的重要工具,其基座姿态和关节角间存在复杂的一阶微分约束关系,进行运动规划时需直接考虑微分约束,这让其运动规划问题充满挑战。“先求逆运动学,再规划轨迹”的运动...自由漂浮空间机器人(free-floating space robot,FFSR)是进行在轨服务的重要工具,其基座姿态和关节角间存在复杂的一阶微分约束关系,进行运动规划时需直接考虑微分约束,这让其运动规划问题充满挑战。“先求逆运动学,再规划轨迹”的运动规划框架,存在目标构型与初始构型未必在同一连通域的隐患,为克服这一隐患,基于有目标偏置的RRT(GB-RRT)研究了FFSR从初始构型到目标末端位姿的运动规划问题。对于算法中的目标末端位姿导引生长,考虑到因FFSR执行机构自由度不足,而导致的末端位姿误差收敛与有效调节基座姿态相互矛盾的问题,提出适时调节基座姿态的目标末端位姿导引局部规划器,该局部规划器在保证末端位姿误差能够收敛情况下,兼顾基座姿态调节。此外,还设计了用于探索构型空间的随机构型导引生长局部规划器。将上述2种局部规划器与GB-RRT结合,可实现在不求解逆运动学的情况下,完成规划任务,且保证基座姿态扰动满足要求。仿真验证了算法的有效性。展开更多
文摘自由漂浮空间机器人(free-floating space robot,FFSR)是进行在轨服务的重要工具,其基座姿态和关节角间存在复杂的一阶微分约束关系,进行运动规划时需直接考虑微分约束,这让其运动规划问题充满挑战。“先求逆运动学,再规划轨迹”的运动规划框架,存在目标构型与初始构型未必在同一连通域的隐患,为克服这一隐患,基于有目标偏置的RRT(GB-RRT)研究了FFSR从初始构型到目标末端位姿的运动规划问题。对于算法中的目标末端位姿导引生长,考虑到因FFSR执行机构自由度不足,而导致的末端位姿误差收敛与有效调节基座姿态相互矛盾的问题,提出适时调节基座姿态的目标末端位姿导引局部规划器,该局部规划器在保证末端位姿误差能够收敛情况下,兼顾基座姿态调节。此外,还设计了用于探索构型空间的随机构型导引生长局部规划器。将上述2种局部规划器与GB-RRT结合,可实现在不求解逆运动学的情况下,完成规划任务,且保证基座姿态扰动满足要求。仿真验证了算法的有效性。