A high-altitude long-endurance aircraft with high-aspect-ratio wing usually generates large deformation,which brings the geometric nonlinear aeroelastic problems.In recent decades,it has become a key focus of the inte...A high-altitude long-endurance aircraft with high-aspect-ratio wing usually generates large deformation,which brings the geometric nonlinear aeroelastic problems.In recent decades,it has become a key focus of the international researchers of aeroelasticity.But some critical technologies are not developed systematically,such as aerodynamic calculation methods of the curved wing with deformation,moreover,there are few experimental validations of these technologies.In this paper,we established the steady aerodynamic calculating method of the curved wing with quite large deformation based on the extended lifting line method,and calculated the unsteady aerodynamics using the strip theory considering curved surface effects.Combining the structure geometrical nonlinear finite element method,we constructed a systematic analytic approach for the static aeroelasticity and flutter of very flexible wing,and further designed the ground vibration and wind tunnel test to verify this approach.Through the test and the theoretic results comparison,we concluded that the extended lifting line method has adaptable precision for the static aeroealsticity and the strip theory considering curved surface effects for flutter analysis can give exact critical speed and flutter mode when the dynamic stall does not happen.The work in this paper shows that the geometric nonlinear aeroelastic analytic approach for very flexible wing has very high efficiency and adaptable precision.It can be used in the engineering applications,especially the iterated design in preliminary stage.展开更多
The CFD/CSD coupling method is turning into the main research direction for the static/dynamic aeroelastic analyses. If one wants to use the method for the complex engineering aeroelastic problems, he needs to investi...The CFD/CSD coupling method is turning into the main research direction for the static/dynamic aeroelastic analyses. If one wants to use the method for the complex engineering aeroelastic problems, he needs to investigate the relative aeroelasfic algorithms, such as the numerical computational method of unsteady aerodynamic forces, equivalent low-dimensional structural fi- nite element model and the solution method of structural dynamic equations, data transfer technique between fluid and structure, the moving grid method, etc. Besides, he also needs to improve the computational efficiency by such as massive parallel CFD algorithm, reduced-order model (ROM) of unsteady aerodynamic forces, etc. In this paper, based on the authors' recent investigations, the research progresses in computational aeroelastic methods and their applications to engineering problem are summarized.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 90716006,10902006)the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20091102110015)
文摘A high-altitude long-endurance aircraft with high-aspect-ratio wing usually generates large deformation,which brings the geometric nonlinear aeroelastic problems.In recent decades,it has become a key focus of the international researchers of aeroelasticity.But some critical technologies are not developed systematically,such as aerodynamic calculation methods of the curved wing with deformation,moreover,there are few experimental validations of these technologies.In this paper,we established the steady aerodynamic calculating method of the curved wing with quite large deformation based on the extended lifting line method,and calculated the unsteady aerodynamics using the strip theory considering curved surface effects.Combining the structure geometrical nonlinear finite element method,we constructed a systematic analytic approach for the static aeroelasticity and flutter of very flexible wing,and further designed the ground vibration and wind tunnel test to verify this approach.Through the test and the theoretic results comparison,we concluded that the extended lifting line method has adaptable precision for the static aeroealsticity and the strip theory considering curved surface effects for flutter analysis can give exact critical speed and flutter mode when the dynamic stall does not happen.The work in this paper shows that the geometric nonlinear aeroelastic analytic approach for very flexible wing has very high efficiency and adaptable precision.It can be used in the engineering applications,especially the iterated design in preliminary stage.
文摘The CFD/CSD coupling method is turning into the main research direction for the static/dynamic aeroelastic analyses. If one wants to use the method for the complex engineering aeroelastic problems, he needs to investigate the relative aeroelasfic algorithms, such as the numerical computational method of unsteady aerodynamic forces, equivalent low-dimensional structural fi- nite element model and the solution method of structural dynamic equations, data transfer technique between fluid and structure, the moving grid method, etc. Besides, he also needs to improve the computational efficiency by such as massive parallel CFD algorithm, reduced-order model (ROM) of unsteady aerodynamic forces, etc. In this paper, based on the authors' recent investigations, the research progresses in computational aeroelastic methods and their applications to engineering problem are summarized.