Numerical investigation on the self-induced unsteadiness of tip leakage flow(TLF) for an axial low-speed compressor with smooth wall and six single grooved casings are presented. A ten-passage numerical scheme is used...Numerical investigation on the self-induced unsteadiness of tip leakage flow(TLF) for an axial low-speed compressor with smooth wall and six single grooved casings are presented. A ten-passage numerical scheme is used to solve the unsteady Reynolds averaged Navier-Stokes(URANS) equations. It is found that the single grooves at various axial locations could have a large impact on the self-induced unsteadiness and the stall margin improvement(SMI) of compressor. The trend of SMI with groove center location demonstrates that the groove located near the mid of blade tip chord generates the best SMI. The worst groove is located about 20% Cax after the blade leading edge. The root-mean-squre of static pressure(RMSP) contours at 99.5% span and fast Fourier transform for the static pressure traces recorded in the tip clearance region for each casing are analyzed. The results demonstrate that the single groove location not only affects the oscillating strength but also the frequency of the unsteady tip leakage flow. At the near-stall point of smooth casing, the self-induced unsteadiness of TLF is enhanced most by the best grooved casing for SMI. While, the self-induced unsteadiness disappears when the worst groove for SMI is added. The characteristic frequency of TLF is about 0.55 blade passing frequency(BPF) with smooth casing. The frequency components become complicated as the single groove moves from the leading edge to the trailing edge of the blade.展开更多
To get an insight into the occurrence and the mechanism of flow unsteadiness in the tip region of centrifugal compressor impellers, the flow in Krain’s impeller is investigated by using both steady and unsteady RAN...To get an insight into the occurrence and the mechanism of flow unsteadiness in the tip region of centrifugal compressor impellers, the flow in Krain’s impeller is investigated by using both steady and unsteady RANS solver techniques. It is found that the flow unsteadiness on the pressure side is much stronger than that on the suction side. The periodical frequency of the unsteady flow is around half of the blade passing frequency. The originating mechanism of the flow unsteadiness is illustrated with the time-dependent tip leakage flow and blade loading at the tip region. Due to the blockage caused by the joint effects of broken-downed tip leakage vortex, separated fluids and tip leakage flow at downstream, a low pressure region is formed on the pressure side, consequently the blade loadings is altered. In turn, the changed blade loadings will alter the intensity of tip leakage flow. Such alternative behavior finally results in the periodic process. By comparing the calculated flow field in the cases of single-passage and four-passage models, it is confirmed that the investigated flow unsteadiness is confined in each single passage, as no phase differences are found in the model of four passages. This is different from the situation in axial compressor when the rotating instability is encountered. The flow unsteadiness only occurs at the working conditions with small mass flow rates, and the oscillation intensity will be enhanced with the decrease of mass flow rate. When the mass flow rate is too small, the flow unsteadiness in a single passage may trigger rotating stall, as the disturbance propagates in the circumferential direction.展开更多
基金supported by National Natural Science Foundation of China with project No.51010007,No.51106153
文摘Numerical investigation on the self-induced unsteadiness of tip leakage flow(TLF) for an axial low-speed compressor with smooth wall and six single grooved casings are presented. A ten-passage numerical scheme is used to solve the unsteady Reynolds averaged Navier-Stokes(URANS) equations. It is found that the single grooves at various axial locations could have a large impact on the self-induced unsteadiness and the stall margin improvement(SMI) of compressor. The trend of SMI with groove center location demonstrates that the groove located near the mid of blade tip chord generates the best SMI. The worst groove is located about 20% Cax after the blade leading edge. The root-mean-squre of static pressure(RMSP) contours at 99.5% span and fast Fourier transform for the static pressure traces recorded in the tip clearance region for each casing are analyzed. The results demonstrate that the single groove location not only affects the oscillating strength but also the frequency of the unsteady tip leakage flow. At the near-stall point of smooth casing, the self-induced unsteadiness of TLF is enhanced most by the best grooved casing for SMI. While, the self-induced unsteadiness disappears when the worst groove for SMI is added. The characteristic frequency of TLF is about 0.55 blade passing frequency(BPF) with smooth casing. The frequency components become complicated as the single groove moves from the leading edge to the trailing edge of the blade.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51236006, 51576153)
文摘To get an insight into the occurrence and the mechanism of flow unsteadiness in the tip region of centrifugal compressor impellers, the flow in Krain’s impeller is investigated by using both steady and unsteady RANS solver techniques. It is found that the flow unsteadiness on the pressure side is much stronger than that on the suction side. The periodical frequency of the unsteady flow is around half of the blade passing frequency. The originating mechanism of the flow unsteadiness is illustrated with the time-dependent tip leakage flow and blade loading at the tip region. Due to the blockage caused by the joint effects of broken-downed tip leakage vortex, separated fluids and tip leakage flow at downstream, a low pressure region is formed on the pressure side, consequently the blade loadings is altered. In turn, the changed blade loadings will alter the intensity of tip leakage flow. Such alternative behavior finally results in the periodic process. By comparing the calculated flow field in the cases of single-passage and four-passage models, it is confirmed that the investigated flow unsteadiness is confined in each single passage, as no phase differences are found in the model of four passages. This is different from the situation in axial compressor when the rotating instability is encountered. The flow unsteadiness only occurs at the working conditions with small mass flow rates, and the oscillation intensity will be enhanced with the decrease of mass flow rate. When the mass flow rate is too small, the flow unsteadiness in a single passage may trigger rotating stall, as the disturbance propagates in the circumferential direction.