研究了流体初始马赫数为2.0时,探测器的存在与否对刚性盘-缝-带型降落伞系统气动减速性能以及流场流体结构特性的影响.对于非定常可压缩流体的数值模拟,流场采用了三层块结构自适应网格加密技术,配合混合形式的TCD (tuned center differ...研究了流体初始马赫数为2.0时,探测器的存在与否对刚性盘-缝-带型降落伞系统气动减速性能以及流场流体结构特性的影响.对于非定常可压缩流体的数值模拟,流场采用了三层块结构自适应网格加密技术,配合混合形式的TCD (tuned center difference)和WENO (weighted essentially non-oscillatory)计算格式以及基于拉伸涡亚格子模型的大涡模拟方法来处理超音速流中的激波以及大尺度湍流旋涡结构等.结果表明:无探测器时,降落伞系统的流场结构稳定,扰动较小;有探测器存在时,探测器后端的湍流尾迹和伞衣内部逆向运动溢出的流体与伞衣前端的弓形激波周期性的相互作用,使得激波位置发生前移、激波倾角变小,伞衣内部流场难以达到平衡稳定状态.这加剧了降落伞系统的气动阻力振荡脉动变化,降低了降落伞系统气动阻力系数,同时也使得降落伞系统流场尾迹结构更加复杂.展开更多
The motion of the fins and control surfaces of underwater vehicles in a fluid is an interesting and challenging research subject.Typically the effect of fin oscillations on the fluid flow around such a body is highly ...The motion of the fins and control surfaces of underwater vehicles in a fluid is an interesting and challenging research subject.Typically the effect of fin oscillations on the fluid flow around such a body is highly unsteady, generating vortices and requiring detailed analysis of fluid-structure interactions.An understanding of the complexities of such flows is of interest to engineers developing vehicles capable of high dynamic performance in their propulsion and maneuvering.In the present study, a CFD based RANS simulation of a 3-D fin body moving in a viscous fluid was developed.It investigated hydrodynamic performance by evaluating the hydrodynamic coefficients (lift, drag and moment) at two different oscillating frequencies.A parametric analysis of the factors that affect the hydrodynamic performance of the fin body was done, along with a comparison of results from experiments.The results of the simulation were found in close agreement with experimental results and this validated the simulation as an effective tool for evaluation of the unsteady hydrodynamic coefficients of 3-D fins.This work can be further be used for analysis of the stability and maneuverability of fin actuated underwater vehicles.展开更多
The flexible transmission shaft and wheel propeller are combined as the kinetic source equipment, which realizes the nmlti-motion modes of the autonomous underwater vehicle (AUV) such as vectored thruster and wheele...The flexible transmission shaft and wheel propeller are combined as the kinetic source equipment, which realizes the nmlti-motion modes of the autonomous underwater vehicle (AUV) such as vectored thruster and wheeled movement. In order to study the interactional principle between the hull and the wheel propellers while the AUV navigating in water, the computational fluid dynamics (CFD) method is used to simulate numerically the unsteady viscous flow around AUV with propellers by using the Reynolds-averaged Navier-Stokes (RANS) equations, shear-stress transport (SST) k-w model and pressure with splitting of operators (PISO) algorithm based on sliding mesh. The hydrodynamic parameters of AUV with propellers such as resistance, pressure and velocity are got, which reflect well the real ambient flow field of AUV with propellers. Then, the semi-implicit method for pressure-linked equations (SIMPLE) algorithm is used to compute the steady viscous flow field of AUV hull and propellers, respectively. The computational results agree well with the experimental data, which shows that the numerical method has good accuracy in the prediction of hydrodynamic performance. The interaction between AUV hull and wheel propellers is predicted qualitatively and quantitatively by comparing the hydrodynamic parameters such as resistance, pressure and velocity with those from integral computation and partial computation of the viscous flow around AUV with propellers, which provides an effective reference to the shady on noise and vibration of AUV hull and propellers in real environment. It also provides technical support for the design of new AUVs.展开更多
The unsteady performance of drag and double reverse propeller podded propulsors in open water was numerically simulated using a computational fluid dynamics (CFD) method. A moving mesh method was used to more realis...The unsteady performance of drag and double reverse propeller podded propulsors in open water was numerically simulated using a computational fluid dynamics (CFD) method. A moving mesh method was used to more realistically simulate propulsor working conditions, and the thrust, torque, and lateral force coefficients of both propulsors were compared and analyzed. Forces acting on different parts of the propulsors along with the flow field distribution of steady and unsteady results at different advance coefficients were compared. Moreover, the change of the lateral force and the difference between the abovementioned two methods were mainly analyzed. It was shown that the thrust and torque results of both methods were similar, with the lateral force results having the highest deviation展开更多
In this paper, a novel unsteady fluid network simulation method to compute the air system of jet engine was coded to predict the characteristics of pressure, temperature and mass flow rate of the flow and the temperat...In this paper, a novel unsteady fluid network simulation method to compute the air system of jet engine was coded to predict the characteristics of pressure, temperature and mass flow rate of the flow and the temperature of the solid in the gas turbine engine. The fluid and solid areas are divided into the network comprised of branches and nodes, and the method solves transient mass, energy conservation equations at each node and momentum conservation equation at each branch by a newly deduced numerical method. With this method, to simulate complicated fluid and solid system in short time becomes possible. To verify the code developed, it has been applied to simulate a gas turbine model against the widely used commercial software Flowmaster. And the comparisons show that the two are in good agreement. Then the verified program is applied to the prediction of the characteristics of a designed turbine disk and air-cooling system associated to it, and useful information is obtained.展开更多
Aims of this paper are to improve ADI differential quadrature method (ADI-DQM) based on Bernstein polynomials and add a new application to the differential quadrature method. By using the new methodology, the numeri...Aims of this paper are to improve ADI differential quadrature method (ADI-DQM) based on Bernstein polynomials and add a new application to the differential quadrature method. By using the new methodology, the numerical solutions of the governing equations of unsteady two-dimensional flow of a polytropic gas are investigated. The numerical results reveal that the new technique is very effective and gives high accuracy, good convergence and reasonable stability.展开更多
This paper deals with time dependent performance characteristics of cavitating hydrofoils, the flow around which has been simulated using pressure-based finite volume method. A bubble dynamics cavitation model was use...This paper deals with time dependent performance characteristics of cavitating hydrofoils, the flow around which has been simulated using pressure-based finite volume method. A bubble dynamics cavitation model was used to investigate the unsteady behavior of cavitating flow and describe the generation and evaporation of vapor phase. For choosing the turbulence model and mesh size a non cavitating study was conducted. Three turbulence models such as Spalart-Allmaras, Shear Stress Turbulence (SST) κ-ω model, Re-Normalization Group (RNG) κ-ε model with enhanced wall treatment are used to capture the turbulent boundary layer along the hydrofoil surface. The cavitating study presents an unsteady behavior of the partial cavity attached to the foil at different time steps for σ = 0.8 and σ = 0.4. Moreover, this study is focused on cavitation inception, the shape and general behavior of sheet cavitation, lift and drag forces for different cavitation numbers.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No.50879014
文摘The motion of the fins and control surfaces of underwater vehicles in a fluid is an interesting and challenging research subject.Typically the effect of fin oscillations on the fluid flow around such a body is highly unsteady, generating vortices and requiring detailed analysis of fluid-structure interactions.An understanding of the complexities of such flows is of interest to engineers developing vehicles capable of high dynamic performance in their propulsion and maneuvering.In the present study, a CFD based RANS simulation of a 3-D fin body moving in a viscous fluid was developed.It investigated hydrodynamic performance by evaluating the hydrodynamic coefficients (lift, drag and moment) at two different oscillating frequencies.A parametric analysis of the factors that affect the hydrodynamic performance of the fin body was done, along with a comparison of results from experiments.The results of the simulation were found in close agreement with experimental results and this validated the simulation as an effective tool for evaluation of the unsteady hydrodynamic coefficients of 3-D fins.This work can be further be used for analysis of the stability and maneuverability of fin actuated underwater vehicles.
基金Project(2006AA09Z235) supported by National High Technology Research and Development Program of ChinaProject(CX2009B003) supported by Hunan Provincial Innovation Foundation For Postgraduate,China
文摘The flexible transmission shaft and wheel propeller are combined as the kinetic source equipment, which realizes the nmlti-motion modes of the autonomous underwater vehicle (AUV) such as vectored thruster and wheeled movement. In order to study the interactional principle between the hull and the wheel propellers while the AUV navigating in water, the computational fluid dynamics (CFD) method is used to simulate numerically the unsteady viscous flow around AUV with propellers by using the Reynolds-averaged Navier-Stokes (RANS) equations, shear-stress transport (SST) k-w model and pressure with splitting of operators (PISO) algorithm based on sliding mesh. The hydrodynamic parameters of AUV with propellers such as resistance, pressure and velocity are got, which reflect well the real ambient flow field of AUV with propellers. Then, the semi-implicit method for pressure-linked equations (SIMPLE) algorithm is used to compute the steady viscous flow field of AUV hull and propellers, respectively. The computational results agree well with the experimental data, which shows that the numerical method has good accuracy in the prediction of hydrodynamic performance. The interaction between AUV hull and wheel propellers is predicted qualitatively and quantitatively by comparing the hydrodynamic parameters such as resistance, pressure and velocity with those from integral computation and partial computation of the viscous flow around AUV with propellers, which provides an effective reference to the shady on noise and vibration of AUV hull and propellers in real environment. It also provides technical support for the design of new AUVs.
基金Supported by National Natural Science Foundation of China (41176074, 51209048,51379043,51409063) High tech ship research project of Ministry of industry and technology (G014613002) The support plan for youth backbone teachers of Harbin Engineering University (HEUCFQ1408)
文摘The unsteady performance of drag and double reverse propeller podded propulsors in open water was numerically simulated using a computational fluid dynamics (CFD) method. A moving mesh method was used to more realistically simulate propulsor working conditions, and the thrust, torque, and lateral force coefficients of both propulsors were compared and analyzed. Forces acting on different parts of the propulsors along with the flow field distribution of steady and unsteady results at different advance coefficients were compared. Moreover, the change of the lateral force and the difference between the abovementioned two methods were mainly analyzed. It was shown that the thrust and torque results of both methods were similar, with the lateral force results having the highest deviation
文摘In this paper, a novel unsteady fluid network simulation method to compute the air system of jet engine was coded to predict the characteristics of pressure, temperature and mass flow rate of the flow and the temperature of the solid in the gas turbine engine. The fluid and solid areas are divided into the network comprised of branches and nodes, and the method solves transient mass, energy conservation equations at each node and momentum conservation equation at each branch by a newly deduced numerical method. With this method, to simulate complicated fluid and solid system in short time becomes possible. To verify the code developed, it has been applied to simulate a gas turbine model against the widely used commercial software Flowmaster. And the comparisons show that the two are in good agreement. Then the verified program is applied to the prediction of the characteristics of a designed turbine disk and air-cooling system associated to it, and useful information is obtained.
文摘Aims of this paper are to improve ADI differential quadrature method (ADI-DQM) based on Bernstein polynomials and add a new application to the differential quadrature method. By using the new methodology, the numerical solutions of the governing equations of unsteady two-dimensional flow of a polytropic gas are investigated. The numerical results reveal that the new technique is very effective and gives high accuracy, good convergence and reasonable stability.
文摘This paper deals with time dependent performance characteristics of cavitating hydrofoils, the flow around which has been simulated using pressure-based finite volume method. A bubble dynamics cavitation model was used to investigate the unsteady behavior of cavitating flow and describe the generation and evaporation of vapor phase. For choosing the turbulence model and mesh size a non cavitating study was conducted. Three turbulence models such as Spalart-Allmaras, Shear Stress Turbulence (SST) κ-ω model, Re-Normalization Group (RNG) κ-ε model with enhanced wall treatment are used to capture the turbulent boundary layer along the hydrofoil surface. The cavitating study presents an unsteady behavior of the partial cavity attached to the foil at different time steps for σ = 0.8 and σ = 0.4. Moreover, this study is focused on cavitation inception, the shape and general behavior of sheet cavitation, lift and drag forces for different cavitation numbers.