WT5 'BZThis paper presents an unsteady and nonlinear wake model based on th e widely used Peters He finite state dynamic wake model with improvements. The swirl component in the tip trace plane (TTP) can be pr...WT5 'BZThis paper presents an unsteady and nonlinear wake model based on th e widely used Peters He finite state dynamic wake model with improvements. The swirl component in the tip trace plane (TTP) can be predicted, nonlinear items are added into the linear theory, and the old small angle assumption use d in matrix prediction is removed. All of these enha ncements are aimed at the low speed flight phase and formulations for the induce d velocity field just in the TTP frame are derived. The corresponding FORTRAN pr ogram is tested and optimized for the real time applications on PCs.展开更多
This paper deals with time dependent performance characteristics of cavitating hydrofoils, the flow around which has been simulated using pressure-based finite volume method. A bubble dynamics cavitation model was use...This paper deals with time dependent performance characteristics of cavitating hydrofoils, the flow around which has been simulated using pressure-based finite volume method. A bubble dynamics cavitation model was used to investigate the unsteady behavior of cavitating flow and describe the generation and evaporation of vapor phase. For choosing the turbulence model and mesh size a non cavitating study was conducted. Three turbulence models such as Spalart-Allmaras, Shear Stress Turbulence (SST) κ-ω model, Re-Normalization Group (RNG) κ-ε model with enhanced wall treatment are used to capture the turbulent boundary layer along the hydrofoil surface. The cavitating study presents an unsteady behavior of the partial cavity attached to the foil at different time steps for σ = 0.8 and σ = 0.4. Moreover, this study is focused on cavitation inception, the shape and general behavior of sheet cavitation, lift and drag forces for different cavitation numbers.展开更多
This paper concerns the real time control of the boundary layer on an aircraft wing. This new approach consists in heating the surface in an unsteady regime using electrically resistant strips embedded in the wing ski...This paper concerns the real time control of the boundary layer on an aircraft wing. This new approach consists in heating the surface in an unsteady regime using electrically resistant strips embedded in the wing skin. The control of the boundary layer's separation and transition point will provide a reduction in friction drag, and hence a reduction in fuel consumption. This new method consists in applying the required thermal power in the different strips in order to ensure the desired temperatures on the aircraft wing. We also have to determine the optimum size of these strips (length, width and distance between two strips). This implies finding the best mathematical model corresponding to the physics enabling us to facilitate the calculation for any type of material used for the wings. Secondly, the heating being unsteady, and, as during a flight the flow conditions or the ambient temperatures vary, the thermal power needed changes and must be chosen as fast as possible in order to ensure optimal operating conditions.展开更多
the establishment of multi-element airfoil in steady and unsteady ground effect N-S equation turbulence model, the S-A model of multi element airfoils during takeoff and landing high attack angle change numerical simu...the establishment of multi-element airfoil in steady and unsteady ground effect N-S equation turbulence model, the S-A model of multi element airfoils during takeoff and landing high attack angle change numerical simulation analysis, the calculation results show that the lower altitude, lift and drag wing angle decreased; the greater the ground the effect is more obvious, the greater the loss of lift. The simulation results show that the lift coefficient is slightly less than that of unsteady numerical simulation, and the drag coefficient is slightly less than that of unsteady numerical simulation. The ground disturbance to the wing not only affects the steady state flow field, but also is closely related to the unsteady aerodynamic performance. The results of this study can provide a reference for the design and flight control of large aircraft wings.展开更多
An unsteady Reynolds averaged Navier–Stokes(URANS) method combined with a rigid dynamic mesh technique was developed to simulate unsteady flows around complex configurations during pitching motion. First, a test case...An unsteady Reynolds averaged Navier–Stokes(URANS) method combined with a rigid dynamic mesh technique was developed to simulate unsteady flows around complex configurations during pitching motion. First, a test case with the NACA0012 airfoil was selected to validate the numerical methods and our in-house codes. Then, we evaluated the unsteady flows around an advanced aircraft model during harmonic pitching motion at high incidence. The effects of pitching motion on the hysteresis of aerodynamic force, the evolution of the leading-edge vortex, and the distribution of pressure on the model's surface were analyzed in detail. The roles of several significant parameters such as the reduced frequency and pitching amplitude were revealed. Several conclusions were found: pitching motion would delay the initiation of the leading-edge vortex, strengthen the vorticity, postpone the occurrence of vortex breakdown, and weaken the massively separated flows, thus causing additional aerodynamic force. Two categories of critical reduced frequency have been found, which divide the influence of reduced frequency on aerodynamic force into three stages, called the linear increasing range, slowly increasing range, and constant range. The first-order phase lag between the aerodynamic force and the incidence is a constant that is independent of the amplitude when the reduced frequency is sufficiently high. A scaled maximum value of C_L is proposed; it depends only on the reduced frequency(instead of the amplitude), and increases linearly when the reduced frequency is sufficiently low.展开更多
Transonic internal flow around an airfoil is associated with self-excited unsteady shock wave oscillation. This unsteady phenomenon generates buffet, high speed impulsive noise, non-synchronous vibration, high cycle f...Transonic internal flow around an airfoil is associated with self-excited unsteady shock wave oscillation. This unsteady phenomenon generates buffet, high speed impulsive noise, non-synchronous vibration, high cycle fatigue failure and so on. Present study investigates the effectiveness of perforated cavity to control this unsteady flow field. The cavity has been incorporated on the airfoil surface. The degree of perforation of the cavity is kept constant as 30%. However, the number of openings(perforation) at the cavity upper wall has been varied. Results showed that this passive control reduces the strength of shock wave compared to that of baseline airfoil. As a result, the intensity of shock wave/boundary layer interaction and the root mean square(RMS) of pressure oscillation around the airfoil have been reduced with the control method.展开更多
文摘WT5 'BZThis paper presents an unsteady and nonlinear wake model based on th e widely used Peters He finite state dynamic wake model with improvements. The swirl component in the tip trace plane (TTP) can be predicted, nonlinear items are added into the linear theory, and the old small angle assumption use d in matrix prediction is removed. All of these enha ncements are aimed at the low speed flight phase and formulations for the induce d velocity field just in the TTP frame are derived. The corresponding FORTRAN pr ogram is tested and optimized for the real time applications on PCs.
文摘This paper deals with time dependent performance characteristics of cavitating hydrofoils, the flow around which has been simulated using pressure-based finite volume method. A bubble dynamics cavitation model was used to investigate the unsteady behavior of cavitating flow and describe the generation and evaporation of vapor phase. For choosing the turbulence model and mesh size a non cavitating study was conducted. Three turbulence models such as Spalart-Allmaras, Shear Stress Turbulence (SST) κ-ω model, Re-Normalization Group (RNG) κ-ε model with enhanced wall treatment are used to capture the turbulent boundary layer along the hydrofoil surface. The cavitating study presents an unsteady behavior of the partial cavity attached to the foil at different time steps for σ = 0.8 and σ = 0.4. Moreover, this study is focused on cavitation inception, the shape and general behavior of sheet cavitation, lift and drag forces for different cavitation numbers.
文摘This paper concerns the real time control of the boundary layer on an aircraft wing. This new approach consists in heating the surface in an unsteady regime using electrically resistant strips embedded in the wing skin. The control of the boundary layer's separation and transition point will provide a reduction in friction drag, and hence a reduction in fuel consumption. This new method consists in applying the required thermal power in the different strips in order to ensure the desired temperatures on the aircraft wing. We also have to determine the optimum size of these strips (length, width and distance between two strips). This implies finding the best mathematical model corresponding to the physics enabling us to facilitate the calculation for any type of material used for the wings. Secondly, the heating being unsteady, and, as during a flight the flow conditions or the ambient temperatures vary, the thermal power needed changes and must be chosen as fast as possible in order to ensure optimal operating conditions.
文摘the establishment of multi-element airfoil in steady and unsteady ground effect N-S equation turbulence model, the S-A model of multi element airfoils during takeoff and landing high attack angle change numerical simulation analysis, the calculation results show that the lower altitude, lift and drag wing angle decreased; the greater the ground the effect is more obvious, the greater the loss of lift. The simulation results show that the lift coefficient is slightly less than that of unsteady numerical simulation, and the drag coefficient is slightly less than that of unsteady numerical simulation. The ground disturbance to the wing not only affects the steady state flow field, but also is closely related to the unsteady aerodynamic performance. The results of this study can provide a reference for the design and flight control of large aircraft wings.
基金supported by the Innovation Foundation of CARDCthe Innovation Foundation of LSAI of CARDC
文摘An unsteady Reynolds averaged Navier–Stokes(URANS) method combined with a rigid dynamic mesh technique was developed to simulate unsteady flows around complex configurations during pitching motion. First, a test case with the NACA0012 airfoil was selected to validate the numerical methods and our in-house codes. Then, we evaluated the unsteady flows around an advanced aircraft model during harmonic pitching motion at high incidence. The effects of pitching motion on the hysteresis of aerodynamic force, the evolution of the leading-edge vortex, and the distribution of pressure on the model's surface were analyzed in detail. The roles of several significant parameters such as the reduced frequency and pitching amplitude were revealed. Several conclusions were found: pitching motion would delay the initiation of the leading-edge vortex, strengthen the vorticity, postpone the occurrence of vortex breakdown, and weaken the massively separated flows, thus causing additional aerodynamic force. Two categories of critical reduced frequency have been found, which divide the influence of reduced frequency on aerodynamic force into three stages, called the linear increasing range, slowly increasing range, and constant range. The first-order phase lag between the aerodynamic force and the incidence is a constant that is independent of the amplitude when the reduced frequency is sufficiently high. A scaled maximum value of C_L is proposed; it depends only on the reduced frequency(instead of the amplitude), and increases linearly when the reduced frequency is sufficiently low.
基金carried out with the computational resource support from sub-project CP 3111 (AIF 3rd round) of Higher Education Quality Enhancement Project (HEQEP), UGC, MoE, GoB
文摘Transonic internal flow around an airfoil is associated with self-excited unsteady shock wave oscillation. This unsteady phenomenon generates buffet, high speed impulsive noise, non-synchronous vibration, high cycle fatigue failure and so on. Present study investigates the effectiveness of perforated cavity to control this unsteady flow field. The cavity has been incorporated on the airfoil surface. The degree of perforation of the cavity is kept constant as 30%. However, the number of openings(perforation) at the cavity upper wall has been varied. Results showed that this passive control reduces the strength of shock wave compared to that of baseline airfoil. As a result, the intensity of shock wave/boundary layer interaction and the root mean square(RMS) of pressure oscillation around the airfoil have been reduced with the control method.