期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于非对称增强注意力与特征交叉融合的行人重识别方法 被引量:1
1
作者 金梅 李媛媛 +2 位作者 郝兴军 杨曼 张立国 《计量学报》 CSCD 北大核心 2022年第12期1573-1580,共8页
针对现有的行人重识别方法提取到的特征信息充分性与辨识性不足导致检索精度低的问题,提出一种基于非对称增强注意力与特征交叉融合的行人重识别方法。首先,构建非对称增强注意力模块,通过多重池化聚合的跨邻域通道交互注意力增强显著... 针对现有的行人重识别方法提取到的特征信息充分性与辨识性不足导致检索精度低的问题,提出一种基于非对称增强注意力与特征交叉融合的行人重识别方法。首先,构建非对称增强注意力模块,通过多重池化聚合的跨邻域通道交互注意力增强显著特征表示,使网络聚焦于图像中的行人区域;其次,考虑到网络各层特征间的差异性与关联性,构建特征交叉融合模块,利用交叉融合方式实现同层不同级特征的跨层级融合,进而实现多尺度融合;最后,水平切分输出特征以获取局部特征,从而实现在特定区域上描述行人。在Market1501、DukeMTMC-reID与CUHK03这3个公开数据集上对提出的方法进行了验证,首位命中率(Rank-1)分别达到了93.5%、85.1%和64.3%,证明了该方法在提升行人重识别性能上具有优越性。 展开更多
关键词 计量学 行人重识别 非对称增强注意力 特征交叉融合 深度学习 首位命中率
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部