The feasibility of longer spans relies on the successful implementation of new high-strength light weight materials such as carbon fiber reinforced polymer(CFRP). First, a dimensionless equilibrium equation and the co...The feasibility of longer spans relies on the successful implementation of new high-strength light weight materials such as carbon fiber reinforced polymer(CFRP). First, a dimensionless equilibrium equation and the corresponding compatibility equation are established to develop the cable force equation and cable displacement governing equation for suspension cables, respectively. Subsequently, the inextensible cable case is introduced. The formula of the Irvine parameter is considered and its physical interpretation as well as its relationship with the chord gravity stiffness is presented. The influences on the increment of cable force and displacement by λ2 and load ratio p′ are analyzed, respectively. Based on these assumptions and the analytical formulations, a 2000 m span suspension cable is utilized as an example to verify the proposed formulation and the responses of the relative increment of cable force and cable displacement under symmetrical and asymmetrical loads are studied and presented. In each case, the deflections resulting from elastic elongation or solely due to geometrical displacement are analyzed for the lower elastic modulus CFRP. Finally, in comparison with steel cables, the influences on the cable force equation and the governing displacement equation by span and rise span ratio are analyzed. Moreover, the influences on the static performance of suspension bridge by span and sag ratios are also analyzed. The substantive characteristics of the static performance of super span CFRP suspension bridges are clarified and the superiority and the characteristics of CFRP cable structure are demonstrated analytically.展开更多
This paper describes the problem of stability for one-dimensional Cellular Neural Networks(CNNs). A sufficient condition is presented to ensure complete stability for a class of special CNN's with nonsymmetric temp...This paper describes the problem of stability for one-dimensional Cellular Neural Networks(CNNs). A sufficient condition is presented to ensure complete stability for a class of special CNN's with nonsymmetric templates, where the parameter in the output function is greater than or equal to zero. The main method is analysising the property of the equilibrium point of the CNNs system.展开更多
Local inhomogeneity in totally asymmetric simple exclusion processes (TASEPs) with different hopping rates was studied. Many biological and chemical phenomena can be described by these non-equilibrium processes. A s...Local inhomogeneity in totally asymmetric simple exclusion processes (TASEPs) with different hopping rates was studied. Many biological and chemical phenomena can be described by these non-equilibrium processes. A simple approximate theory and extensive Monte Carlo computer simulations were used to calculate the steady-state phase diagrams and bulk densities. It is found that the phase diagram for local inhomogeneity in TASEP with different hopping rates p is qualitatively similar to homogeneous models. Interestingly, there is a saturation point pair (a*, fl*) for the system, which is decided by parameters p and q. There are three stationary phases in the system, when parameter p is fixed (i.e., p=0.8), with the increase of the parameter q, the region of LD/LD and HD/HD phase increases and the HD/LD is the only phase which the region shrinks. The analytical results are in good agreement with simulations.展开更多
Stresses, particularly those at geometric discontinuities, influence the structural integrity of engineering components. Motivated by the prevalence of complicated-shaped perforated components, the objective of this p...Stresses, particularly those at geometric discontinuities, influence the structural integrity of engineering components. Motivated by the prevalence of complicated-shaped perforated components, the objective of this paper is to demonstrate the ability to stress analyze loaded finite members containing asymmetrical, irregularly-shaped cutouts. Recognizing the difficulties in obtaining purely theoretical or numerical solutions for these situations, the paper presents an expeditious means of experimentally stress analyzing such structures. Processing the load-induced temperature information with a series representation of a stress function provides the independent stress components reliably full-field, including on the edge of a hole. The stresses satisfy equilibrium and strains satisfy compatibility. In addition to being able to stress analyze complicated shapes using real, rather than complex variables, the technique is significant in which it smooths the recorded thermal information, is widely applicable, and requires neither differentiating the measured data nor knowing the elastic properties or external boundary conditions. The latter is extremely important since the external loading is often unknown in practice. That the approach provides the independent stresses is also significant since fatigue analyses and strength criteria typically necessitate knowing the individual components of stress. Present results are supported by those from a finite element analysis, strain gage measurements and load equilibrium.展开更多
基金Project(2010-K2-8)supported by Science and Technology Program of the Ministry of Housing and Urban Rural Development,ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘The feasibility of longer spans relies on the successful implementation of new high-strength light weight materials such as carbon fiber reinforced polymer(CFRP). First, a dimensionless equilibrium equation and the corresponding compatibility equation are established to develop the cable force equation and cable displacement governing equation for suspension cables, respectively. Subsequently, the inextensible cable case is introduced. The formula of the Irvine parameter is considered and its physical interpretation as well as its relationship with the chord gravity stiffness is presented. The influences on the increment of cable force and displacement by λ2 and load ratio p′ are analyzed, respectively. Based on these assumptions and the analytical formulations, a 2000 m span suspension cable is utilized as an example to verify the proposed formulation and the responses of the relative increment of cable force and cable displacement under symmetrical and asymmetrical loads are studied and presented. In each case, the deflections resulting from elastic elongation or solely due to geometrical displacement are analyzed for the lower elastic modulus CFRP. Finally, in comparison with steel cables, the influences on the cable force equation and the governing displacement equation by span and rise span ratio are analyzed. Moreover, the influences on the static performance of suspension bridge by span and sag ratios are also analyzed. The substantive characteristics of the static performance of super span CFRP suspension bridges are clarified and the superiority and the characteristics of CFRP cable structure are demonstrated analytically.
基金Supported by the NSF of Zhejiang Province(M103087) Supported by the Science Research Fund of Hushou Teacher's College
文摘This paper describes the problem of stability for one-dimensional Cellular Neural Networks(CNNs). A sufficient condition is presented to ensure complete stability for a class of special CNN's with nonsymmetric templates, where the parameter in the output function is greater than or equal to zero. The main method is analysising the property of the equilibrium point of the CNNs system.
基金Project(2011FZ050) supported by Applied Basic Research Program of Yunnan Provincial Science and Technology Department,ChinaProject(2011J084) supported by Master Program of Yunnan Province Education Department,China
文摘Local inhomogeneity in totally asymmetric simple exclusion processes (TASEPs) with different hopping rates was studied. Many biological and chemical phenomena can be described by these non-equilibrium processes. A simple approximate theory and extensive Monte Carlo computer simulations were used to calculate the steady-state phase diagrams and bulk densities. It is found that the phase diagram for local inhomogeneity in TASEP with different hopping rates p is qualitatively similar to homogeneous models. Interestingly, there is a saturation point pair (a*, fl*) for the system, which is decided by parameters p and q. There are three stationary phases in the system, when parameter p is fixed (i.e., p=0.8), with the increase of the parameter q, the region of LD/LD and HD/HD phase increases and the HD/LD is the only phase which the region shrinks. The analytical results are in good agreement with simulations.
文摘Stresses, particularly those at geometric discontinuities, influence the structural integrity of engineering components. Motivated by the prevalence of complicated-shaped perforated components, the objective of this paper is to demonstrate the ability to stress analyze loaded finite members containing asymmetrical, irregularly-shaped cutouts. Recognizing the difficulties in obtaining purely theoretical or numerical solutions for these situations, the paper presents an expeditious means of experimentally stress analyzing such structures. Processing the load-induced temperature information with a series representation of a stress function provides the independent stress components reliably full-field, including on the edge of a hole. The stresses satisfy equilibrium and strains satisfy compatibility. In addition to being able to stress analyze complicated shapes using real, rather than complex variables, the technique is significant in which it smooths the recorded thermal information, is widely applicable, and requires neither differentiating the measured data nor knowing the elastic properties or external boundary conditions. The latter is extremely important since the external loading is often unknown in practice. That the approach provides the independent stresses is also significant since fatigue analyses and strength criteria typically necessitate knowing the individual components of stress. Present results are supported by those from a finite element analysis, strain gage measurements and load equilibrium.