期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于GSL-YOLO模型的综放工作面混矸率检测方法
1
作者 王福奇 王志峰 +4 位作者 金建成 井庆贺 王耀辉 王大龙 汪义龙 《工矿自动化》 CSCD 北大核心 2024年第9期59-65,137,共8页
针对现有基于深度学习的综放工作面混矸率检测方法在井下低照度、高粉尘、煤矸堆叠等复杂条件下存在煤矸识别精度低、分割效果差、模型参数量和运算量大、未实现混矸率的实时检测等问题,提出了一种基于GSL-YOLO模型的混矸率检测方法。GS... 针对现有基于深度学习的综放工作面混矸率检测方法在井下低照度、高粉尘、煤矸堆叠等复杂条件下存在煤矸识别精度低、分割效果差、模型参数量和运算量大、未实现混矸率的实时检测等问题,提出了一种基于GSL-YOLO模型的混矸率检测方法。GSL-YOLO模型在YOLOv8-seg的基础上进行以下改进:在主干网络中引入全局注意力机制(GAM),通过减少信息弥散和放大全局交互表示提高模型特征提取能力;选用具有高效局部聚合网络的空间金字塔池化(SPPELAN)模块,提升模型处理不同尺寸目标时的检测性能;采用轻量级非对称多级压缩检测头(LADH),降低模型的训练难度,同时提高推理速度。提出了一种基于类别分割掩码的混矸率计算方法,该方法基于煤流图像处理结果中的分割掩码信息,计算其中矸石的像素面积与总像素面积的比值,作为瞬时混矸率。实验结果表明:(1)GSL-YOLO模型的m AP@0.5∶0.95达96.1%,比YOLOv8-seg模型提高了0.8%。(2)GSL-YOLO模型的参数量为2.9×10^(6)个,浮点运算次数为11.4×10^(9),模型权重为6.0MiB,比YOLOv8-seg模型分别降低了12.1%,5.8%,11.8%,实现了模型的轻量化。(3)GSL-YOLO模型在测试集上的帧率为12帧/s,基本满足实时检测要求。(4)与YOLO系列模型相比,GSL-YOLO模型分割效果最好,检测精度最高,参数量和运算量较少,综合性能最佳。(5)基于截取的综放工作面后部刮板输送机上煤流视频中的3帧图像,计算了瞬时混矸率,结果表明,提出的混矸率计算方法基本实现了综放工作面混矸率的实时计算。 展开更多
关键词 智能放煤 煤矸识别 混矸率检测 YOLOv8-seg 图像分割 全局注意力机制 非对称检测头
下载PDF
改进YOLOv8的轻量级光学遥感图像船舶目标检测算法
2
作者 杨志渊 罗亮 +1 位作者 吴天阳 于博向 《计算机工程与应用》 CSCD 北大核心 2024年第16期248-257,共10页
针对现有基于深度学习的轻量级目标检测算法,在应用于光学遥感图像船舶目标检测任务时所面临的精度低、检测速度慢的情况,提出一种基于YOLOv8s的轻量级光学遥感图像船舶目标检测算法。引入一种新的轻量级非对称检测头,使模型在复杂背景... 针对现有基于深度学习的轻量级目标检测算法,在应用于光学遥感图像船舶目标检测任务时所面临的精度低、检测速度慢的情况,提出一种基于YOLOv8s的轻量级光学遥感图像船舶目标检测算法。引入一种新的轻量级非对称检测头,使模型在复杂背景中更加关注船舶对象;主干网络融合选择注意力模块,通过动态调整特征提取主干的感受野来提高目标检测的性能;引入Slim-FPN的思想来改进颈部,在保持检测精度的同时减少参数数量;设计快速卷积模块FasterConv,基于此重构C2f中的Bottleneck结构,命名为Faster_C2f,增强了网络的特征提取能力。实验结果表明,改进的算法在保证检测速度的同时取得了95.2%的检测精度,比基线模型提高1.4%,每秒检测帧数提高8%,模型参数减少33%,较主流算法在检测效果上有一定的提升。 展开更多
关键词 YOLOv8 遥感图像 非对称检测头 注意力模块 特征提取
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部