为了纠偏中煤仓、矸石仓及加固地基,根据地质资料及前期沉降观测结果分析了其偏斜原因。通过优化钻孔布置,选择合理浆液,采用非对称注浆法进行纠偏和地基加固,处理场地面积660 m2,共布置注浆孔107个,消耗单液水泥浆601 m3、水泥-水玻璃...为了纠偏中煤仓、矸石仓及加固地基,根据地质资料及前期沉降观测结果分析了其偏斜原因。通过优化钻孔布置,选择合理浆液,采用非对称注浆法进行纠偏和地基加固,处理场地面积660 m2,共布置注浆孔107个,消耗单液水泥浆601 m3、水泥-水玻璃双液浆128 m3。注浆结束后,中煤仓及矸石仓整体最大倾斜度分别由16.8‰、4.3‰降低到0.94‰、0.21‰,地基承载力特征值由110 k Pa提高至220 k Pa。结果表明,非对称注浆法纠偏效果明显,并较大地提高地基承载能力,保障了中煤仓及矸石仓的长期稳定性。展开更多
目的 探讨非对称回波最小二乘估算法迭代水脂分离序列(iterative decomposition of water and fat with echo asymmetrical and least-squares estimation quantitation sequence, IDEAL-IQ)来源的R2^(*)值在乳腺良恶性肿瘤鉴别诊断中...目的 探讨非对称回波最小二乘估算法迭代水脂分离序列(iterative decomposition of water and fat with echo asymmetrical and least-squares estimation quantitation sequence, IDEAL-IQ)来源的R2^(*)值在乳腺良恶性肿瘤鉴别诊断中的价值,并与传统多回波T2^(*)梯度回波(gradient recalled echo, GRE)序列来源的R2^(*)值进行比较。材料与方法 回顾性分析2021年9月至2023年10月在中国医科大学附属第一医院连续收治的42名患者的50个良性肿瘤病灶,在本院影像归档和通信系统(picture archiving and communication systems, PACS)中使用倾向性评分匹配方法匹配肿瘤所在最大层面的最长径,按1∶3的比例纳入150名患者的150个恶性肿瘤病灶。将恶性肿瘤根据预后因子[雌激素受体(estrogen receptor, ER)、孕激素受体(progesterone receptor, PR)以及人表皮生长因子受体2(human epidermal growth factor receptor 2, HER-2)]的阳性/阴性表达情况进行分组。所有患者均接受包含IDEAL-IQ和多回波T2*GRE序列的多参数MRI,测量以下定量参数:IDEAL-IQ序列R2^(*)值(R2^(*)IDEAL)、多回波T2*GRE序列R2^(*)值(R2^(*)GRE)、表观扩散系数(apparent diffusion coefficient, ADC)及肿瘤长径。根据原始资料类型的不同,分别利用单因素分析(独立样本t检验、Mann-Whitney U检验等方法)对比分析各参数的差异。采用Spearman相关性分析R2^(*)IDEAL与R2^(*)GRE及二者与ADC的相关性。采用配对样本t检验比较R2^(*)IDEAL与R2^(*)GRE的差异。采用logistic回归分析建立联合诊断模型,并使用受试者工作特征(receiver operating characteristic, ROC)曲线及曲线下面积(area under the curve,AUC)分析单独及联合参数鉴别乳腺肿瘤良恶性的效能。结果 相关性分析显示乳腺肿瘤患者的R2^(*)IDEAL与R2^(*)GRE呈中度相关(r=0.763,P<0.001),二者与ADC值均呈负性弱相关[r=-0.300(R2^(*)IDEAL),-0.306(R2^(*)GRE),P<0.001]。良性组与恶性组中,R2^(*)IDEAL与R2^(*)GRE均呈中度相关(r=0.745、0.680,P<0.001),二者与ADC均无相关性。两种序列所得的R2^(*)值差异有统计学意义(P<0.001)。R2^(*)IDEAL在良恶性组间差异有统计学意义(P<0.001),管腔HER-2阴性型R2^(*)值最高。对于单一参数,ADC值鉴别良恶性的AUC最高(0.857);对于联合参数,R2^(*)IDEAL+ADC鉴别良性组与管腔阴性组的AUC最高(0.927);差异均有统计学意义(P<0.05)。结论 IDEAL-IQ序列生成的R2^(*)值可用于区分良恶性乳腺肿块,可能成为除ADC外辅助乳腺肿瘤良恶性鉴别的又一无需对比剂参数。展开更多
In the generalized continuum mechanics(GCM)theory framework,asymmetric wave equations encompass the characteristic scale parameters of the medium,accounting for microstructure interactions.This study integrates two th...In the generalized continuum mechanics(GCM)theory framework,asymmetric wave equations encompass the characteristic scale parameters of the medium,accounting for microstructure interactions.This study integrates two theoretical branches of the GCM,the modified couple stress theory(M-CST)and the one-parameter second-strain-gradient theory,to form a novel asymmetric wave equation in a unified framework.Numerical modeling of the asymmetric wave equation in a unified framework accurately describes subsurface structures with vital implications for subsequent seismic wave inversion and imaging endeavors.However,employing finite-difference(FD)methods for numerical modeling may introduce numerical dispersion,adversely affecting the accuracy of numerical modeling.The design of an optimal FD operator is crucial for enhancing the accuracy of numerical modeling and emphasizing the scale effects.Therefore,this study devises a hybrid scheme called the dung beetle optimization(DBO)algorithm with a simulated annealing(SA)algorithm,denoted as the SA-based hybrid DBO(SDBO)algorithm.An FD operator optimization method under the SDBO algorithm was developed and applied to the numerical modeling of asymmetric wave equations in a unified framework.Integrating the DBO and SA algorithms mitigates the risk of convergence to a local extreme.The numerical dispersion outcomes underscore that the proposed SDBO algorithm yields FD operators with precision errors constrained to 0.5‱while encompassing a broader spectrum coverage.This result confirms the efficacy of the SDBO algorithm.Ultimately,the numerical modeling results demonstrate that the new FD method based on the SDBO algorithm effectively suppresses numerical dispersion and enhances the accuracy of elastic wave numerical modeling,thereby accentuating scale effects.This result is significant for extracting wavefield perturbations induced by complex microstructures in the medium and the analysis of scale effects.展开更多
基金Projects(52022113,52278546,52108433)supported by the National Natural Science Foundation of ChinaProject(2023QYJC009)supported by the Central South University Research Program of Advanced Interdisciplinary Studies,ChinaProject(2023ZZTS0364)supported by the Fundamental Research Funds for the Central Universities,China。
文摘为了纠偏中煤仓、矸石仓及加固地基,根据地质资料及前期沉降观测结果分析了其偏斜原因。通过优化钻孔布置,选择合理浆液,采用非对称注浆法进行纠偏和地基加固,处理场地面积660 m2,共布置注浆孔107个,消耗单液水泥浆601 m3、水泥-水玻璃双液浆128 m3。注浆结束后,中煤仓及矸石仓整体最大倾斜度分别由16.8‰、4.3‰降低到0.94‰、0.21‰,地基承载力特征值由110 k Pa提高至220 k Pa。结果表明,非对称注浆法纠偏效果明显,并较大地提高地基承载能力,保障了中煤仓及矸石仓的长期稳定性。
基金supported by project XJZ2023050044,A2309002 and XJZ2023070052.
文摘In the generalized continuum mechanics(GCM)theory framework,asymmetric wave equations encompass the characteristic scale parameters of the medium,accounting for microstructure interactions.This study integrates two theoretical branches of the GCM,the modified couple stress theory(M-CST)and the one-parameter second-strain-gradient theory,to form a novel asymmetric wave equation in a unified framework.Numerical modeling of the asymmetric wave equation in a unified framework accurately describes subsurface structures with vital implications for subsequent seismic wave inversion and imaging endeavors.However,employing finite-difference(FD)methods for numerical modeling may introduce numerical dispersion,adversely affecting the accuracy of numerical modeling.The design of an optimal FD operator is crucial for enhancing the accuracy of numerical modeling and emphasizing the scale effects.Therefore,this study devises a hybrid scheme called the dung beetle optimization(DBO)algorithm with a simulated annealing(SA)algorithm,denoted as the SA-based hybrid DBO(SDBO)algorithm.An FD operator optimization method under the SDBO algorithm was developed and applied to the numerical modeling of asymmetric wave equations in a unified framework.Integrating the DBO and SA algorithms mitigates the risk of convergence to a local extreme.The numerical dispersion outcomes underscore that the proposed SDBO algorithm yields FD operators with precision errors constrained to 0.5‱while encompassing a broader spectrum coverage.This result confirms the efficacy of the SDBO algorithm.Ultimately,the numerical modeling results demonstrate that the new FD method based on the SDBO algorithm effectively suppresses numerical dispersion and enhances the accuracy of elastic wave numerical modeling,thereby accentuating scale effects.This result is significant for extracting wavefield perturbations induced by complex microstructures in the medium and the analysis of scale effects.