期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于多尺度卷积输入和ConvCRFs的非对称U-Net脑肿瘤MRI图像分割
1
作者
李星
《信息与电脑》
2023年第1期34-37,共4页
针对磁共振成像(Magnetic Resonance Imaging,MRI)进行脑胶质瘤病灶边界分割的问题,提出基于多尺度卷积输入和卷积条件随机场(ConvCRFs)的非对称U-Net脑肿瘤MRI图像分割算法。首先,设计了多尺度卷积输入模块作为预处理步骤,以丰富全局...
针对磁共振成像(Magnetic Resonance Imaging,MRI)进行脑胶质瘤病灶边界分割的问题,提出基于多尺度卷积输入和卷积条件随机场(ConvCRFs)的非对称U-Net脑肿瘤MRI图像分割算法。首先,设计了多尺度卷积输入模块作为预处理步骤,以丰富全局上下文语义信息的提取与输入;其次,采用非对称U-Net网络结合ConvCRFs,对分割结果进行判别微调,从而提高肿瘤的分割准确率;最后,为了验证算法的可行性,在Brats2020数据集上进行了实验。实验结果表明,Dice系数达到0.887,表明对脑胶质瘤图像分割算法具有重要的临床引导价值。
展开更多
关键词
病灶边界分割
多尺度卷积输入模块
非对称u-net
下载PDF
职称材料
题名
基于多尺度卷积输入和ConvCRFs的非对称U-Net脑肿瘤MRI图像分割
1
作者
李星
机构
西安邮电大学计算机学院
出处
《信息与电脑》
2023年第1期34-37,共4页
基金
陕西省重点研发计划项目“数据与模型的双迭代机制:胶质母细胞瘤医学影像的持续性学习方法研究”(项目编号:2022GY-315)。
文摘
针对磁共振成像(Magnetic Resonance Imaging,MRI)进行脑胶质瘤病灶边界分割的问题,提出基于多尺度卷积输入和卷积条件随机场(ConvCRFs)的非对称U-Net脑肿瘤MRI图像分割算法。首先,设计了多尺度卷积输入模块作为预处理步骤,以丰富全局上下文语义信息的提取与输入;其次,采用非对称U-Net网络结合ConvCRFs,对分割结果进行判别微调,从而提高肿瘤的分割准确率;最后,为了验证算法的可行性,在Brats2020数据集上进行了实验。实验结果表明,Dice系数达到0.887,表明对脑胶质瘤图像分割算法具有重要的临床引导价值。
关键词
病灶边界分割
多尺度卷积输入模块
非对称u-net
Keywords
lesion boundary segmentation
multi-scale convolutional input module
asymmetrical
u-net
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
TP183 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于多尺度卷积输入和ConvCRFs的非对称U-Net脑肿瘤MRI图像分割
李星
《信息与电脑》
2023
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部