期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
ENHANCED UNSTEADY AND NONLINEAR ROTOR WAKE MODEL FOR REAL-TIME FLIG HT SIMULATION 被引量:2
1
作者 孙传伟 高正 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2003年第1期12-16,共5页
WT5 'BZThis paper presents an unsteady and nonlinear wake model based on th e widely used Peters He finite state dynamic wake model with improvements. The swirl component in the tip trace plane (TTP) can be pr... WT5 'BZThis paper presents an unsteady and nonlinear wake model based on th e widely used Peters He finite state dynamic wake model with improvements. The swirl component in the tip trace plane (TTP) can be predicted, nonlinear items are added into the linear theory, and the old small angle assumption use d in matrix prediction is removed. All of these enha ncements are aimed at the low speed flight phase and formulations for the induce d velocity field just in the TTP frame are derived. The corresponding FORTRAN pr ogram is tested and optimized for the real time applications on PCs. 展开更多
关键词 HELICOPTER ROTOR WAKE dynamics inflow
下载PDF
Comparisons between unsteady sediment-transport modeling 被引量:2
2
作者 Lahouari Benayada Mahmoud Hasbaia 《Journal of Central South University》 SCIE EI CAS 2013年第2期536-540,共5页
The comparative study between unsteady flow models in alluvial streams shows a chaotic residue as for the choices of a forecasting model. The difficulty resides in the choice of the expressions of friction resistance ... The comparative study between unsteady flow models in alluvial streams shows a chaotic residue as for the choices of a forecasting model. The difficulty resides in the choice of the expressions of friction resistance and sediment transport. Three types of mathematical models were selected. Models of type one and two are fairly general, but require a considerable number of boundary conditions, which related to each size range of sediments. It can be a handicap during rivers studies which are not very well followed in terms of experimental measurements. Also, the use of complex models is not always founded. But then, the model of type three requires a limited number of boundary conditions and solves only a system of three equations at each time step. It allows a considerable saving in calculating times. 展开更多
关键词 friction resistance bed load suspended load mobile-bed modeling
下载PDF
Numerical Study of Unsteady Behavior of Partial Cavitation on Two Dimensional Hydrofoils
3
作者 Md. Nur-E-Mostafa Md. Mashud Karim Md. Manirul Alam Sarker 《Journal of Shipping and Ocean Engineering》 2012年第1期10-17,共8页
This paper deals with time dependent performance characteristics of cavitating hydrofoils, the flow around which has been simulated using pressure-based finite volume method. A bubble dynamics cavitation model was use... This paper deals with time dependent performance characteristics of cavitating hydrofoils, the flow around which has been simulated using pressure-based finite volume method. A bubble dynamics cavitation model was used to investigate the unsteady behavior of cavitating flow and describe the generation and evaporation of vapor phase. For choosing the turbulence model and mesh size a non cavitating study was conducted. Three turbulence models such as Spalart-Allmaras, Shear Stress Turbulence (SST) κ-ω model, Re-Normalization Group (RNG) κ-ε model with enhanced wall treatment are used to capture the turbulent boundary layer along the hydrofoil surface. The cavitating study presents an unsteady behavior of the partial cavity attached to the foil at different time steps for σ = 0.8 and σ = 0.4. Moreover, this study is focused on cavitation inception, the shape and general behavior of sheet cavitation, lift and drag forces for different cavitation numbers. 展开更多
关键词 CAVITATION CAV2003 hydrofoil finite volume method turbulence model unsteady flow.
下载PDF
Unsteady RANS and detached eddy simulation of the multiphase flow in a co-current spray drying
4
作者 Jolius Gimbun Noor Intan Shafinas Muhammad Woon Phui Law 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第9期1421-1428,共8页
A detached eddy simulation(DES) and a k-ε-based Reynolds-averaged Navier–Stokes(RANS) calculation on the co-current spray drying chamber is presented. The DES used here is based on the Spalart–Allmaras(SA) turbulen... A detached eddy simulation(DES) and a k-ε-based Reynolds-averaged Navier–Stokes(RANS) calculation on the co-current spray drying chamber is presented. The DES used here is based on the Spalart–Allmaras(SA) turbulence model, whereas the standard k-ε(SKE) was considered here for comparison purposes. Predictions of the mean axial velocity, temperature and humidity profile have been evaluated and compared with experimental measurements. The effects of the turbulence model on the predictions of the mean axial velocity, temperature and the humidity profile are most noticeable in the(highly anisotropic) spraying region. The findings suggest that DES provide a more accurate prediction(with error less than 5%) of the flow field in a spray drying chamber compared with RANS-based k-ε models. The DES simulation also confirmed the presence of anisotropic turbulent flow in the spray dryer from the analysis of the velocity component fluctuations and turbulent structure as illustrated by the Q-criterion. 展开更多
关键词 Drying Turbulence Two-phase flow CFD Detached eddy simulation Modelling strategy
下载PDF
A model and simulation of cathode flooding and drying on unsteady proton exchange membrane fuel cell 被引量:1
5
作者 A.Bakhtiar KIM Young-Bok +2 位作者 YOU Jin-Kwang YOON Jung-In CHOI Kwang-Hwan 《Journal of Central South University》 SCIE EI CAS 2012年第9期2572-2577,共6页
A water balance has a significant impact on the overall system performance in proton exchange membrane fuel cell.An actual fuel cell application has a dynamic electrical load which means also dynamic electrical curren... A water balance has a significant impact on the overall system performance in proton exchange membrane fuel cell.An actual fuel cell application has a dynamic electrical load which means also dynamic electrical current.Therefore,since this electrical current is known,the water production from the fuel cell reaction is also able to be predicted.As long as the fuel cell water transportation model is provided,the present liquid water inside the porous medium is also able to be modeled.A model of the liquid water saturation level in a fuel cell in unsteady load condition was proposed.This model is a series of the water transportation model of water saturation level for the final output of proton exchange membrane(PEM) fuel cell to predict the flooding or drying of PEM fuel cell.The simulation of vehicle fuel cell in different dynamic load profiles and different inlet air conditions was done using this model.The simulation result shows that PEM fuel cell with different dynamic load profiles has different liquid water saturation level profiles.This means that a dynamic load fuel cell requires also a dynamic input air humidification. 展开更多
关键词 model simulation FLOODING unsteady condition fuel cell
下载PDF
Application of 2D Numerical Model to Unsteady Performance Evaluation of Vertical-Axis Tidal Current Turbine 被引量:1
6
作者 LIU Zhen QU Hengliang +2 位作者 SHI Hongda HU Gexing HYUN Beom-Soo 《Journal of Ocean University of China》 SCIE CAS 2016年第6期977-986,共10页
Abstract Tidal current energy is renewable and sustainable, which is a promising altemative energy resource for the future elec- tricity supply. The straight-bladed vertical-axis turbine is regarded as a useful tool t... Abstract Tidal current energy is renewable and sustainable, which is a promising altemative energy resource for the future elec- tricity supply. The straight-bladed vertical-axis turbine is regarded as a useful tool to capture the tidal current energy especially under low-speed conditions. A 2D unsteady numerical model based on Ansys-Fluent 12.0 is established to conduct the numerical simulation, which is validated by the corresponding experimental data. For the unsteady calculations, the SST model, 2x 105 and 0.01 s are se- lected as the proper turbulence model, mesh number, and time step, respectively. Detailed contours of the velocity distributions around the rotor blade foils have been provided for a flow field analysis. The tip speed ratio (TSR) determines the azimuth angle of the appearance of the torque peak, which occurs once for a blade in a single revolution. It is also found that simply increasing the incident flow velocity could not improve the turbine performance accordingly. The peaks of the averaged power and torque coeffi- cients appear at TSRs of 2.1 and 1.8, respectively. Furthermore, several shapes of the duct augmentation are proposed to improve the turbine performance by contracting the flow path gradually from the open mouth of the duct to the rotor. The duct augmentation can significantly enhance the power and torque output. Furthermore, the elliptic shape enables the best performance of the turbine. The numerical results prove the capability of the present 2D model for the unsteady hydrodynamics and an operating performance analy- sis of the vertical tidal stream turbine. 展开更多
关键词 tidal current energy vertical-axis turbine unsteady numerical model duct augmentation average power coefficient tip speed ratio
全文增补中
Numerical simulation of the influence of ground effect on the performance of multi section wings
7
作者 ZHANG Xinpeng KUANG Jianghong LV Hongyan 《International English Education Research》 2017年第1期57-59,共3页
the establishment of multi-element airfoil in steady and unsteady ground effect N-S equation turbulence model, the S-A model of multi element airfoils during takeoff and landing high attack angle change numerical simu... the establishment of multi-element airfoil in steady and unsteady ground effect N-S equation turbulence model, the S-A model of multi element airfoils during takeoff and landing high attack angle change numerical simulation analysis, the calculation results show that the lower altitude, lift and drag wing angle decreased; the greater the ground the effect is more obvious, the greater the loss of lift. The simulation results show that the lift coefficient is slightly less than that of unsteady numerical simulation, and the drag coefficient is slightly less than that of unsteady numerical simulation. The ground disturbance to the wing not only affects the steady state flow field, but also is closely related to the unsteady aerodynamic performance. The results of this study can provide a reference for the design and flight control of large aircraft wings. 展开更多
关键词 multi-element wing Ground effect numerical simulation
下载PDF
全球外商直接投资周期波动因素的实证分析 被引量:1
8
作者 孙焱林 陈薇薇 《国际贸易问题》 CSSCI 北大核心 2006年第10期91-95,共5页
文章结合外商直接投资的有关理论,选择全球GDP,世界经济自由度指数以及全球跨国公司经营业绩三个变量作为全球外商直接投资波动的解释变量,建立跨度为23年的全球外商直接投资非常定模型。模型表明这三个因素对全球外商直接投资的影响每... 文章结合外商直接投资的有关理论,选择全球GDP,世界经济自由度指数以及全球跨国公司经营业绩三个变量作为全球外商直接投资波动的解释变量,建立跨度为23年的全球外商直接投资非常定模型。模型表明这三个因素对全球外商直接投资的影响每年都在发生变化,且遵循一定规律,模型在总体上也很好地解释全球FDI的周期波动。 展开更多
关键词 全球外商直接投资 周期波动 非常定模型
原文传递
Validation of dynamic cavitation model for unsteady cavitating flow on NACA66 被引量:8
9
作者 ZHANG XiaoBin ZHANG Wei +2 位作者 CHEN JianYe QIU LiMin SUN DaMing 《Science China(Technological Sciences)》 SCIE EI CAS 2014年第4期819-827,共9页
Unsteady cavitating flow is extremely complicated and brings more serious damages and unignorable problems compared with steady cavitating flow.CFD has become a practical way to model cavitation;however,the popularly ... Unsteady cavitating flow is extremely complicated and brings more serious damages and unignorable problems compared with steady cavitating flow.CFD has become a practical way to model cavitation;however,the popularly used full cavitation model cannot reflect the pressure-change that the bubble experiences during its life path in the highly unsteady flow like cloud cavitating.Thus a dynamic cavitation model(DCM)is proposed and it has been considered to have not only the first-order pressure effects but also zero-order effect and can provide greater insight into the physical process of bubble producing,developing and collapsing compared to the traditional cavitation model.DCM has already been validated for steady cavitating flow,and the results were reported.Furthermore,DCM is designed and supposed to be more accurate and efficient in modeling unsteady cavitating flow,which is also the purpose of this paper.The basic characteristic of the unsteady cavitating flow,such as the vapor volume fraction distribution and the evolution of pressure amplitude and frequency at different locations of the hydrofoil,are carefully studied to validate DCM.It is found that not only these characteristics mentioned above accord well with the experimental results,but also some detailed transient flow information is depicted,including the re-entrant jet flow that caused the shedding of the cavity,and the phenomenon of two-peak pressure fluctuation in the vicinity of the cavity closure in a cycle.The numerical results validate the capability of DCM for the application of modeling the complicated unsteady cavitating flow. 展开更多
关键词 unsteady cavitation dynamical cavitation model NACA66 HYDROFOIL
原文传递
Effect of Inlet Guide Vanes on the Performance of Small Axial Flow Fan 被引量:4
10
作者 LIU Yang LIN Zhe +3 位作者 LIN Peifeng JIN Yingzi Toshiaki Setoguchi Heuy Dong Kim 《Journal of Thermal Science》 SCIE EI CAS CSCD 2017年第6期504-513,共10页
Effects of the inlet guide vanes on the static characteristics, aerodynamic noise and internal flow characteristics of a small axial flow fan are studied in this work. The inlet guide vanes with different outlet angle... Effects of the inlet guide vanes on the static characteristics, aerodynamic noise and internal flow characteristics of a small axial flow fan are studied in this work. The inlet guide vanes with different outlet angle are designed, which are mounted on the casing and located at the upstream of the impeller of the prototype fan. Both steady and unsteady flow simulations arc performed. The steady flow is simulated by the calculations of Navier-Stokes equa- tions coupled with RNG k-epsilon turbulence model, while the unsteady flow is computed with large eddy simu- lation. According to the theoretical analysis, the inlet guide vanes with outlet angle of 60° are regarded as the op- timal inlet guide vanes. The static characteristic experiment is carried out in a standard test rig and the aerody- namic noise is tested in a semi-anechoic room. Then, performances of the fan with optimal inlet guide vanes are compared with those of the prototype fan. The results show that there is reasonable agreement between the simu- lation results and the experimental data. It is found that the static characteristics of small axial flow fan is im- proved obviously after installing the optimal inlet guide vanes. Meanwhile, the optimal inlet guide vanes have effect on reducing noise at the near field, but have little effect on the noise at the far field. 展开更多
关键词 small axial flow fan inlet guide vanes static characteristics aerodynamic noise internal flow characteristics
原文传递
Simulation and Experiment Research of Aerodynamic Performance of Small Axial Fans with Struts 被引量:2
11
作者 CHU Wei LIN Peifeng +4 位作者 ZHANG Li JIN Yingzi WANG Yanping Heuy Dong Kim Toshiaki Setoguchi 《Journal of Thermal Science》 SCIE EI CAS CSCD 2016年第3期216-222,共7页
Interaction between rotor and struts has great effect on the performance of small axial fan systems. The small axial fan systems are selected as the studied objects in this paper, and four square struts are downstream... Interaction between rotor and struts has great effect on the performance of small axial fan systems. The small axial fan systems are selected as the studied objects in this paper, and four square struts are downstream of the rotor. The cross section of the struts is changed to the cylindrical shapes for the investigation: one is in the same hy- draulic diameter as the square struts and another one is in the same cross section as the square struts. Influence of the shape of the struts on the static pressure characteristics, the internal flow and the sound emission of the small axial fans are studied. Standard K-s turbulence model and SIMPLE algorithm are applied in the calculation of the steady fluid field, and the curves of the pressure rising against the flow rate are obtained, which demonstrates that the simulation results are in nice consistence with the experimental data. The steady calculation results are set as the initial field in the unsteady calculation. Large eddy simulation and PISO algorithm are used in the transient calculation, and the Ffowcs Williams-Hawkings model is introduced to predict the sound level at the eight monitoring points. The research results show that: the static pressure coefficients of the fan with cylindrical struts increase by about 25% compared to the fan with square strum, and the efficiencies increase by about 28.6%. The research provides a theoretical guide for shape optimization and noise reduction of small axial fan with struts. 展开更多
关键词 STRUTS SHAPE INTERACTION aerodynamic performance
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部