Microstructures of a duplex-phase Zr-2.5Nb alloy treated by pulsed laser were characterized by electron backscatter diffraction (EBSD) and electron channeling contrast (ECC) imaging techniques. Major attention has...Microstructures of a duplex-phase Zr-2.5Nb alloy treated by pulsed laser were characterized by electron backscatter diffraction (EBSD) and electron channeling contrast (ECC) imaging techniques. Major attention has been paid to non-equilibrium hybrid microstructure consisting of both prior a and β phases, and a plates transformed from new β phases to probe α→β transformation characteristics in the alloy. The origin of the hybrid microstructure is attributed to the specific thermodynamic conditions induced by the pulsed laser treatment. ECC observation shows that newly formed [3 phases during laser heating prefer to nucleate and grow at the expense of edges of prior α grains rather than their interiors. EBSD analyses further reveal that orientations of the new β phases are not determined by the prior a grains according to the Burgers relationship but maintain those of the prior β phases in an epitaxial growth way.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51401040)China Postdoctoral Science Foundation(Grant No.2015M572446)+1 种基金Postdoctoral Science Foundation of Chongqing(Grant No.Xm2015003)Scientific and Technological ResearchProgram of Chongqing Municipal Education Commission(Grant No.KJ1500901)
文摘Microstructures of a duplex-phase Zr-2.5Nb alloy treated by pulsed laser were characterized by electron backscatter diffraction (EBSD) and electron channeling contrast (ECC) imaging techniques. Major attention has been paid to non-equilibrium hybrid microstructure consisting of both prior a and β phases, and a plates transformed from new β phases to probe α→β transformation characteristics in the alloy. The origin of the hybrid microstructure is attributed to the specific thermodynamic conditions induced by the pulsed laser treatment. ECC observation shows that newly formed [3 phases during laser heating prefer to nucleate and grow at the expense of edges of prior α grains rather than their interiors. EBSD analyses further reveal that orientations of the new β phases are not determined by the prior a grains according to the Burgers relationship but maintain those of the prior β phases in an epitaxial growth way.