^(115)In是一种重要的活化材料,准确测量它的中子非弹性散射截面数据对中子注量监测具有重要意义。在四川大学原子核科学技术研究所2.5 MV静电质子加速器上,利用核反应D(d,n)~3He产生的单能中子,以^(197)Au作为标准,采用活化法测量了2.9...^(115)In是一种重要的活化材料,准确测量它的中子非弹性散射截面数据对中子注量监测具有重要意义。在四川大学原子核科学技术研究所2.5 MV静电质子加速器上,利用核反应D(d,n)~3He产生的单能中子,以^(197)Au作为标准,采用活化法测量了2.95 Me V、3.94 Me V、5.24 Me V能点的^(115)In中子非弹性散射截面。用Monte Carlo程序MCNPX(Monte Carlo N-Particle eXtended)对靶头材料、冷却水层和样品的包层材料等引起的多次散射效应及注量率衰减效应等进行了修正计算,得到最终结果与Loevestam的计算值符合较好,并且实验中可通过减小靶管、靶底衬、水层及样品的包层材料等厚度来减小多次散射效应和自屏蔽效应的影响。展开更多
By means of the nuclear parton distribution studied only with lepton deep-inelastic scattering experimental data, the J/ψ "normal nuclear absorption" and energy loss effects are studied in a GIauber formalism at HE...By means of the nuclear parton distribution studied only with lepton deep-inelastic scattering experimental data, the J/ψ "normal nuclear absorption" and energy loss effects are studied in a GIauber formalism at HERA and RHIC energies. Assuming that the absorption cross section σabs increases with the charmonium-nucleon center of mass energy, the results reveal a significant dependence of the aabs on rapidity g at RHIC energies. The initial-state energy loss effect, which is found important only at HERA energies, is also considered, and its influence should be eliminated when we studied the absorption effect at low collision energies. Finally, we also present the theoretical prediction for LHC.展开更多
文摘^(115)In是一种重要的活化材料,准确测量它的中子非弹性散射截面数据对中子注量监测具有重要意义。在四川大学原子核科学技术研究所2.5 MV静电质子加速器上,利用核反应D(d,n)~3He产生的单能中子,以^(197)Au作为标准,采用活化法测量了2.95 Me V、3.94 Me V、5.24 Me V能点的^(115)In中子非弹性散射截面。用Monte Carlo程序MCNPX(Monte Carlo N-Particle eXtended)对靶头材料、冷却水层和样品的包层材料等引起的多次散射效应及注量率衰减效应等进行了修正计算,得到最终结果与Loevestam的计算值符合较好,并且实验中可通过减小靶管、靶底衬、水层及样品的包层材料等厚度来减小多次散射效应和自屏蔽效应的影响。
文摘By means of the nuclear parton distribution studied only with lepton deep-inelastic scattering experimental data, the J/ψ "normal nuclear absorption" and energy loss effects are studied in a GIauber formalism at HERA and RHIC energies. Assuming that the absorption cross section σabs increases with the charmonium-nucleon center of mass energy, the results reveal a significant dependence of the aabs on rapidity g at RHIC energies. The initial-state energy loss effect, which is found important only at HERA energies, is also considered, and its influence should be eliminated when we studied the absorption effect at low collision energies. Finally, we also present the theoretical prediction for LHC.