Author researches a lot of the mathematical models and the related conventional material constants in the traditional and the modem mechanics; to adopt two types of variables a and D, for the fatigue-damage-fracture b...Author researches a lot of the mathematical models and the related conventional material constants in the traditional and the modem mechanics; to adopt two types of variables a and D, for the fatigue-damage-fracture behaviors to elastic-plastic steels contained flaws, to put forward several calculation models, which are the driving force and the life prediction expressions at each stage and in whole process; for the key parameters .A1 and ,A2 in two stages, there are functional relation with other conventional material constants σF,m1 and M2,λ2, they are defined as the new calculable comprehensive material constants, and indicate their physical and geometrical meanings. In addition, for conversion methods between two types of variables, relevant calculating example is provided. Thereby, make a linking between the fracture mechanics and the damage mechanics, communicating their relationships. This works for saving man powers and funds on fatigue-damage-fracture testing that will be having practical significance.展开更多
The elasto-plastic damage model for concrete under static loading,previously proposed,was extended to account for the concrete strain-rate through viscous regularization of the evolution of the damage variables.In ord...The elasto-plastic damage model for concrete under static loading,previously proposed,was extended to account for the concrete strain-rate through viscous regularization of the evolution of the damage variables.In order to describe the energy dissipation by the motion of the structure under dynamic loading,a damping model which only includes stiffness damp stress was proposed and incorporated into the proposed rate dependent model to consider the energy dissipation at the material scale.The proposed model was developed in ABAQUS via UMAT and was verified by the simulations of concrete specimens under both tension and compression uniaxial loading at different strain rates.The nonlinear analysis of Koyna concrete dam under earthquake motions indicates that adding stiffness damp into the constitutive model can significantly enhance the calculation efficiency of the dynamic implicit analysis for greatly improving the numerical stability of the model.Considering strain rate effect in the model can affect the displacement reflection of this structure for slightly enhancing the displacement of the top,and can improve the calculation efficiency for greatly reducing the cost time.展开更多
It is well known that metallic materials exhibit worse fatigue damage tolerance as they behave stronger in strength and softer in modulus. This raises concern on the long term safety of the recently developed biomecha...It is well known that metallic materials exhibit worse fatigue damage tolerance as they behave stronger in strength and softer in modulus. This raises concern on the long term safety of the recently developed biomechanical compatible titanium alloys with high strength and low modulus. Here we demonstrate via a model alloy, Ti-24 Nb-4 Zr-8 Sn in weight percent, that this group of multifunctional titanium alloys possessing nonlinear elastic deformation behavior is tolerant in fatigue notch damage. The results reveal that the alloy has a high strength-to-modulus(σ/E) ratio reaching2% but its fatigue notch sensitivity(q) is low, which decreases linearly from 0.45 to 0.25 as stress concentration factor increases from 2 to 4. This exceeds significantly the typical relationship between σ/E and q of other metallic materials exhibiting linear elasticity. Furthermore, fatigue damage is characterized by an extremely deflected mountain-shape fracture surface, resulting in much longer and more tortuous crack growth path as compared to these linear elastic materials. The above phenomena can be explained by the nonlinear elasticity and its induced stress relief at the notch root in an adaptive manner of higher stress stronger relief. This finding provides a new strategy to balance high strength and good damage tolerance property of metallic materials.展开更多
文摘Author researches a lot of the mathematical models and the related conventional material constants in the traditional and the modem mechanics; to adopt two types of variables a and D, for the fatigue-damage-fracture behaviors to elastic-plastic steels contained flaws, to put forward several calculation models, which are the driving force and the life prediction expressions at each stage and in whole process; for the key parameters .A1 and ,A2 in two stages, there are functional relation with other conventional material constants σF,m1 and M2,λ2, they are defined as the new calculable comprehensive material constants, and indicate their physical and geometrical meanings. In addition, for conversion methods between two types of variables, relevant calculating example is provided. Thereby, make a linking between the fracture mechanics and the damage mechanics, communicating their relationships. This works for saving man powers and funds on fatigue-damage-fracture testing that will be having practical significance.
基金Project(2006BAJ03A03)supported by the National Key Technology R&D Program during the 11th Five-Year Plan Period of China
文摘The elasto-plastic damage model for concrete under static loading,previously proposed,was extended to account for the concrete strain-rate through viscous regularization of the evolution of the damage variables.In order to describe the energy dissipation by the motion of the structure under dynamic loading,a damping model which only includes stiffness damp stress was proposed and incorporated into the proposed rate dependent model to consider the energy dissipation at the material scale.The proposed model was developed in ABAQUS via UMAT and was verified by the simulations of concrete specimens under both tension and compression uniaxial loading at different strain rates.The nonlinear analysis of Koyna concrete dam under earthquake motions indicates that adding stiffness damp into the constitutive model can significantly enhance the calculation efficiency of the dynamic implicit analysis for greatly improving the numerical stability of the model.Considering strain rate effect in the model can affect the displacement reflection of this structure for slightly enhancing the displacement of the top,and can improve the calculation efficiency for greatly reducing the cost time.
基金supported by the National Key Research and Development Program of China (2016YFC1102601 and 2017YFC1104901)the National Natural Science Foundation of China (51571190 and 51631007)the Key Research Program of Frontier Sciences of Chinese Academy of Sciences (QYZDJ-SSW-JSC031)
文摘It is well known that metallic materials exhibit worse fatigue damage tolerance as they behave stronger in strength and softer in modulus. This raises concern on the long term safety of the recently developed biomechanical compatible titanium alloys with high strength and low modulus. Here we demonstrate via a model alloy, Ti-24 Nb-4 Zr-8 Sn in weight percent, that this group of multifunctional titanium alloys possessing nonlinear elastic deformation behavior is tolerant in fatigue notch damage. The results reveal that the alloy has a high strength-to-modulus(σ/E) ratio reaching2% but its fatigue notch sensitivity(q) is low, which decreases linearly from 0.45 to 0.25 as stress concentration factor increases from 2 to 4. This exceeds significantly the typical relationship between σ/E and q of other metallic materials exhibiting linear elasticity. Furthermore, fatigue damage is characterized by an extremely deflected mountain-shape fracture surface, resulting in much longer and more tortuous crack growth path as compared to these linear elastic materials. The above phenomena can be explained by the nonlinear elasticity and its induced stress relief at the notch root in an adaptive manner of higher stress stronger relief. This finding provides a new strategy to balance high strength and good damage tolerance property of metallic materials.